Аннотация:
В настоящей работе устанавливается существование слабых решений начально-краевой задачи для уравнений движения вязкоупругой жидкости с памятью вдоль траекторий негладкого поля скоростей и неоднородным граничным условием. Исследование предполагает аппроксимацию исходной задачи приближениями галеркинского типа с последующим предельным переходом на основе априорных оценок. Для исследования поведения траекторий негладкого поля скоростей используется теория регулярных лагранжевых потоков.
Библ. 17.