Аннотация:
Рассматривается двумерное ламинарное обтекание плоской пластины вязкой несжимаемой жидкостью при больших числах Рейнольдса. В рамках асимптотической теории исследуется влияние тела, сносимого вниз по потоку с малой скоростью относительно пластины, на пограничный слой Блазиуса. Исследуется случай, в котором внешнее малое тело, моделируемое потенциальным диполем, движется вниз по потоку с постоянной скоростью. Эта классическая задача формально нестационарна, однако в результате перехода в подвижную систему координат, связанную с диполем, она описывается стационарными решениями уравнений пограничного слоя на движущейся вверх по потоку стенке. Найденные численно решения этой задачи содержат закрытые и открытые висячие отрывные зоны в поле течения. В работе рассчитаны нелинейные режимы влияния диполя на пограничный слой с противотоками и обнаружено, что по мере возрастания интенсивности диполя растет и заданное им давление, действующее на пограничный слой, что вызывает по достижении некоторой критической интенсивности диполя особенность внутри поля течения. Изучена асимптотика решения задачи вблизи уединенной особой точки поля течения и найдено, что вертикальная составляющая скорости обращается в ней в бесконечность, вязкое напряжение в нуль, а при бо́льших интенсивностях диполя решение задачи не существует.
Библ. 16. Фиг. 6.