RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2024, том 64, номер 4, страницы 605–613 (Mi zvmmf11736)

Статьи, опубликованные в английской версии журнала

Three-step approximation methods from continuous and discrete perspective for quasi-variational inequalities

N. Mijajlovića, M. Jaćimovićab

a University of Montenegro, Faculty of Science and Mathematics, 81000, Podgorica, Montenegro
b Montenegrin Academy of Sciences and Arts, 81000, Podgorica, Montenegro

Аннотация: The objective of this manuscript is to study the convergence of three-step approximation methods for quasi-variational inequalities in the general case. First, we propose the three-step dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into a three-step iterative method, which we prove to converge also when it is applied to strongly-monotone quasi-variational inequalities. In addition, we show that linear convergence is guaranteed under strong-monotonicity.

Ключевые слова: quasi-variational inequalities, three-step method, dynamical system, rate of convergence.

Поступила в редакцию: 12.09.2023
Исправленный вариант: 23.10.2023
Принята в печать: 07.06.2024

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2024, 64:4, 605–613


© МИАН, 2024