Аннотация:
Рассматривается первая краевая задача на полосе для системы двух параболических уравнений с параметром при старших производных, принимающим произвольные значения из полуинтервала (0,1]. При значении параметра равном нулю система параболических уравнений вырождается в систему гиперболических уравнений, не содержащих производных по пространственным переменным. Для такой задачи с использованием метода сгущающихся сеток строятся разностные схемы, сходящиеся равномерно по параметру. Рассматривается также построение схем для задачи Дирихле для системы сингулярно возмущенных эллиптических уравнений, вырождающихся в уравнения нулевого порядка.