Аннотация:
Предлагается комбинированный сеточный метод решения задачи Дирихле для уравнения Лапласа на прямоугольном параллелепипеде, когда в узлах, расположенных на расстоянии шага сетки от границы, применяется 6-точечный оператор усреднения, а в остальных узлах используется 26-точечный оператор усреднения. В предположении, что заданные граничные значения имеют на гранях параллелепипеда третьи производные, удовлетворяющие условию Липшица, на ребрах граничные значения непрерывны и их вторые производные подчиняются условию согласования, вытекающему из уравнения Лапласа, доказана равномерная сходимость сеточного решения с четвертым порядком относительно шага сетки. Библ. 8.
Ключевые слова:численное решение уравнения Лапласа, сходимость сеточных решений, область в виде прямоугольного параллелепипеда.