Аннотация:
Выявляется новый феномен, заключающийся в следующем: оказывается, аттракторы нелинейного волнового уравнения могут существенно отличаться от аттракторов его конечномерного аналога, получающегося в результате замены производных по пространственным переменным соответствующими разностными операторами (вне зависимости от шага дискретизации). Изложение ведется на уровне рассмотрения типового примера – краевой задачи для телеграфного уравнения вандерполевского типа с нулевыми условиями Неймана на концах единичного отрезка. Устанавливается, что при некоторой общности положения упомянутая задача допускает только устойчивые периодические по времени движения, причем таковых может быть достаточного много. При переходе же от нее к соответствующей аппроксимирующей системе обыкновенных дифференциальных уравнений ситуация принципиально меняется: все периодические движения (за исключением одного или двух) становятся неустойчивыми, а вместо них появляются устойчивые двумерные инвариантные торы. Библ. 4. Фиг. 4.