Аннотация:
Предлагается метод отбора признаков для линейной регрессии с помощью обобщения информационного критерия Акаике. Использование классического информационного критерия Акаике (ИКА) для отбора признаков связано с полным перебором по всем подмножествам признаков, что приводит к неоправданно большим вычислительным и временным затратам. Предлагается новый информационный критерий, который является непрерывным обобщением ИКА. В результате задача отбора признаков сводится к задаче гладкой оптимизации. Выводится эффективная процедура решения полученной задачи оптимизации. Экспериментальные исследования показывают, что разработанный метод действительно позволяет быстро и эффективно отбирать признаки в линейной регрессии. В экспериментах новая процедура также сравнивается с методом релевантных векторов, который является методом отбора признаков на основе байесовского подхода. Показано, что обе процедуры близки по результатам. Основное отличие нового метода состоит в том, что некоторые коэффициенты регуляризации становятся тождественно равными нулю. Это позволяет избежать эффекта переупрощения модели, который характерен для метода релевантных векторов. Также рассматривается специальный случай (так называемая недиагональная регуляризация), в котором оба метода оказываются идентичными. Библ. 18. Фиг. 4. Табл. 2.
Ключевые слова:распознавание образов, линейная регрессия, отбор признаков, информационный критерий Акаике.