О коммутативных алгебрах $(T+H)$-матриц
			
			Х. Д. Икрамов, 	
Ю. О. Воронцов		 119992 Москва, Ленинские горы, МГУ, ВМК
					
			Аннотация:
			Уточняется известный результат, согласно которому весь класс эрмитовых тёплицевых матриц одновременным унитарным подобием переводится в подмножество вещественных 
$(T+H)$-матриц. Уточнение состоит в том, что эти 
$(T+H)$-матрицы симметричны. Более того, симметрия сохраняется, если то же подобие применить к произвольным (а не только эрмитовым) тёплицевым матрицам и даже к гораздо более общему классу персимметричных матриц. Исследование образа под действием этого же подобия для класса нормальных тёплицевых матриц позволяет выявить коммутативные алгебры, состоящие из (комплексных) симметричных 
$(T+H)$-матриц, которые к тому же нормальны. Предложен алгоритм умножения матриц в этих алгебрах, эквивалентный по сложности перемножению двух циркулянтов порядка n, что в несколько раз меньше сложности перемножения двух 
$(T+H)$-матриц общего вида. Библ. 4 назв.
				
			
Ключевые слова:
			тёплицевы матрицы, циркулянты, ганкелевы матрицы, персимметричные матрицы, 
$(T+H)$-матрицы, быстрое преобразование Фурье.	
			
УДК:
			519.61	Поступила в редакцию: 18.09.2009
Исправленный вариант: 01.12.2009