Аннотация:
Показано, что нестационарные уравнения теории термоупругости с конечными деформациями в лагранжевых и эйлеровых координатах допускают каноническую термодинамически согласованную запись С. К. Годунова, удовлетворяющую условиям гиперболичности по Фридрихсу, при условии, что упругий потенциал является выпуклой функцией энтропии, а также миноров матрицы Якоби упругой деформации. Другими словами, предполагается, что упругий потенциал является поливыпуклым по Боллу. Известно, что подход Болла к доказательству существования и обратимости стационарных упругих деформаций предполагает существенную зависимость упругого потенциала от миноров 2-го порядка матрицы Якоби (т.е. от матрицы кофакторов). Однако упругие потенциалы, которые строятся как аппроксимации реологических законов реальных материалов такому требованию, как правило, не удовлетворяют, а, например, зависят лишь от миноров 1-го порядка (элементов матрицы) и миноров 3-го порядка — детерминанта матрицы Якоби. В данной работе предложен способ построения и регуляризации поливыпуклых упругих потенциалов, в котором не требуется вводить явную зависимость от матрицы кофакторов и который гарантирует, что упругие деформации являются квазиизометриями, и который не изменяет постоянные Ламе упругого материала. Библ. 37.
Ключевые слова:управления теории упругости, поливыпуклость, энтропийные решения, квазиизометрические отображения.
УДК:519.634
Поступила в редакцию: 28.12.2009 Исправленный вариант: 27.04.2010