Аннотация:
Изучаются вопросы корректности разностных схем, аппроксимирующих начально-краевые задачи для параболических уравнений с нелинейным источником степенного вида. Получены простые достаточные условия на входные данные, при которых обобщенное решение дифференциальной и разностной задачи глобально устойчиво при всех $0\leq t\leq+\infty$. Показано, что при их невыполнении решение может разрушаться (обращаться в бесконечность) за конечное время. Устанавливается нижняя граница времени разрушения. Во всех случаях используется техника метода энергетических неравенств, основанная на применении теоремы сравнения Чаплыгина, неравенств типа Бихари и их сеточных аналогов. Для иллюстрации теоретических выводов и проверки двухсторонних оценок времени разрушений решения приводятся результаты вычислительного эксперимента. Библ. 30. Фиг. 1.