RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2004, том 44, номер 12, страницы 2194–2211 (Mi zvmmf733)

Искусственные краевые условия для внешней краевой задачи с цилиндрической неоднородностью

С. А. Назаровa, М. Шпековиус-Нойгебауерb

a 199178 С.-Петербург, В.О. Большой пр., 61, ИПМаш. РАН
b Universitat-GH Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany

Аннотация: Построены локальные искусственные краевые условия, обслуживающие внешние задачи Дирихле и Неймана для достаточно общей формально самосопряженной системы дифференциальных уравнений второго порядка с кусочно-постоянными коэффициентами. Коэффициенты имеют скачки на бесконечной цилиндрической поверхности с произвольным гладким сечением, а форма усекающей поверхности – граница кругового цилиндра с высотой и диаметром $2R$ – приспособлена к такой неоднородности. Конструкция искусственных краевых условий не требует явных формул для фундаментальной матрицы. Доказаны теоремы существования и единственности для исходной и аппроксимационной задачи, и получена асимптотически точная оценка погрешности. Библ. 25.

Ключевые слова: внешние задачи Дирихле и Неймана, искусственные краевые условия, цилиндрические неоднородности.

УДК: 519.63

MSC: Primary 35B30; Secondary 35J15, 35G15

Поступила в редакцию: 05.05.2004


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2004, 44:12, 2087–2103

Реферативные базы данных:


© МИАН, 2024