Аннотация:
Рассматриваются функции, имеющие вогнутую функцию-миноранту или вогнутую опорную функцию в каждой точке области определения. Приводится сравнение класса функций с вогнутой минорантой с другими классами функций, используемыми в глобальной оптимизации, например с липшицевыми функциями, с функциями, представимыми в виде разности двух выпуклых функций, со слабо выпуклыми и полунепрерывными снизу функциями. Показано, что класс функций с вогнутой минорантой замкнут относительно основных операций, используемых в математическом программировании. Приведены правила конструктивного построения вогнутых минорант для достаточно широкого класса явно заданных функций. Описан общий подход к решению задачи глобальной минимизации функции с вогнутой минорантой на выпуклом контактном множестве. Приводятся результаты численного эксперимента, связанного с использованием вогнутых опорных функций для нахождения глобального минимума в одномерных многоэкстремальных задачах. Библ. 32.
Ключевые слова:вогнутая миноранта, глобальный минимум, разность двух выпуклых функций, слабо выпуклые функции, метод Пиявского.