Аннотация:
Рассматривается построение метода численного решения некоторых начально-краевых задач для трех уравнений Соболевского типа с использованием квазиравномерных сеток. Такие сетки содержат конечное число узлов и покрывают неограниченную область, что позволяет корректно учитывать граничные условия на бесконечности. При исследовании вспомогательной задачи построен эффективный метод численного решения уравнений параболического и эллиптического типа в неограниченной области, основанный на применении продольно-поперечной схемы. Доказана безусловная устойчивость
продольно-поперечной схемы в случае неравномерной пространственной сетки. Предложена модификация метода наименьших квадратов, позволяющая с хорошей точностью аппроксимировать двумерные функции, заданные на квазиравномерной сетке. Библ. 13. Фиг. 10.