RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2011, том 51, номер 6, страницы 1091–1120 (Mi zvmmf9466)

Эта публикация цитируется в 4 статьях

Улучшенные аппроксимации решения и производных сингулярно возмущенного уравнения реакции-диффузии на основе метода декомпозиции решения

Г. И. Шишкин, Л. П. Шишкина

620990 Екатеринбург, ул. С. Ковалевской, 16, ИММ УрО РАН

Аннотация: В случае задачи Дирихле для сингулярно возмущенного обыкновенного дифференциального уравнения реакции-диффузии применяется новый подход для построения разностных схем, решения которых и их нормированные первая и вторая производные сходятся в равномерной норме равномерно относительно возмущающего параметра $\varepsilon$, $\varepsilon\in(0,1]$; нормированные производные являются $\varepsilon$-равномерно ограниченными. Главное в этом подходе построения $\varepsilon$-равномерно сходящихся разностных схем – использование равномерных сеток для решения сеточных подзадач для регулярной и сингулярной компонент сеточного решения. На основе техники асимптотических конструкций строится схема метода декомпозиции решения, решение которой и ее нормированные первая и вторая производные сходятся $\varepsilon$-равномерно со скоростью $O(N^{-2}\ln^2N)$, где $N+1$ – число узлов в используемых равномерных сетках. С использованием техники Ричардсона строится улучшенная схема метода декомпозиции решения, для которой и решение, и ее нормированные первая и вторая производные сходятся $\varepsilon$-равномерно в равномерной норме с одной и той же скоростью $O(N^{-4}\ln^2N)$. Библ. 22.

Ключевые слова: сингулярно возмущенная краевая задача, обыкновенное дифференциальное уравнение реакции-диффузии, декомпозиция сеточного решения, техника асимптотических конструкций, разностная схема метода декомпозиции решения, равномерные сетки, $\varepsilon$-равномерная сходимость, равномерная норма, техника Ричардсона, улучшенная схема метода декомпозиции решения, улучшенная аппроксимация производных.

УДК: 519.633

Поступила в редакцию: 15.11.2010


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2011, 51:6, 1020–1049

Реферативные базы данных:


© МИАН, 2024