Аннотация:
Работа посвящена доказательству на основе метода двойственной регуляризации так называемой регуляризованной теоремы Куна–Таккера в недифференциальной форме для параметрической задачи выпуклого программирования в гильбертовом пространстве в случае сильно выпуклого функционала цели. Эта теорема представляет собой утверждение в терминах минимизирующих последовательностей о возможности аппроксимации решения задачи выпуклого программирования точками минимума ее регулярной (с равным единице множителем Лагранжа при функционале цели) функции Лагранжа без каких-либо предположений о регулярности самой оптимизационной задачи. Аппроксимирующие решение точки конструктивно указываются и являются устойчивыми по отношению к ошибкам исходных данных, что делает возможным эффективное применение регуляризованной теоремы Куна–Таккера для решения широкого класса некорректных задач оптимизации, оптимального управления, обратных задач.
Устанавливается связь этого утверждения с дифференциальными свойствами функции значений ($S$-функции). В качестве частного случая теорема содержит классический вариант теоремы Куна–Таккера в недифференциальной форме. Рассматривается вариант регуляризованной теоремы Куна–Таккера в случае выпуклого функционала цели. Библ. 17.
Ключевые слова:выпуклое программирование, принцип Лагранжа, теорема Куна–Таккера в недифференциальной форме, параметрическая задача, минимизирующая последовательность, двойственность, регуляризация, метод возмущений.