Аннотация:
Предлагается численный метод решения задачи Коши для шестого уравнения Пенлеве. Трудность этого решения, как и для других уравнений Пенлеве, состоит в том, что искомая функция может иметь подвижные особые точки типа полюса. Кроме того, само уравнение имеет особенность в точках, где решение равно нулю, единице или значению независимой переменной. Положение точек всех перечисленных типов заранее неизвестно и определяется в процессе решения. Основой метода является переход в окрестности указанных точек к вспомогательным системам дифференциальных уравнений, для которых уравнения и соответствующие решения не имеют особенностей в данной точке и ее окрестности. Основное содержание работы — это вывод вспомогательных уравнений и формулировка критериев перехода. Приводятся результаты численных экспериментов, иллюстрирующие возможности метода. Библ. 7. Фиг. 8. Табл. 1.
Ключевые слова:обыкновенное дифференциальное уравнение Пенлеве VI, полюс решения, особенность уравнения, численный метод решения уравнения Пенлеве VI.