Аннотация:
Предлагается численный метод решения задачи Коши для пятого уравнения Пенлеве. Трудность этого решения, как и для других уравнений Пенлеве, состоит в том, что искомая функция может иметь подвижные особые точки типа полюса. Кроме того, это уравнение имеет особенность в точках, где решение обращается в нуль или принимает значение, равное единице. Положение точек всех перечисленных типов заранее неизвестно и определяется в процессе решения. Основой метода является переход в окрестности указанных точек к вспомогательным системам дифференциальных уравнений, для которых уравнения и соответствующие решения не имеют особенностей в данной точке и ее окрестности. Приводятся результаты численных экспериментов, иллюстрирующие возможности метода. Библ. 6. Фиг. 10. Табл. 2.