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J.Grbić, LS-category of moment-angle manifolds
and Massey products . . . . . . . . . . . . . . 63

P.G.Grinevich (joint with S.Abenda), From real
regular multisoliton solutions of KP-II to finite-
gap solutions . . . . . . . . . . . . . . . . . . . 64
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Plenary lectures

On the integral cohomology of
orbifolds

Anthony Bahri (Rider Univ.), bahri@rider.edu
Dietrich Notbohm, d.notbohm@web.de

Soumen Sarkar (IITM), soumen@iitm.ac.in
Jongbaek Song (KAIST), Jongbaek.song@gmail.com

A variety of tools, including specialized cohomology theories,
have been crafted in recent years to study orbifolds arising
in a variety of different areas of topology and geometry, [1],
[2] and [3]. Strangely enough however, the singular integral
cohomology ring remains somewhat intractable in most cases.

The example of weighted projective space, does succumb to
the traditional methods of algebraic topology, [5]. Additively,
its cohomology agrees with that for ordinary projective space
but the ring structure is saturated with divisibility arising
from the weights. Essential to the computation is the observation
that weighted projective spaces can be constructed by a sequence
of canonical cofibrations, in a manner not unlike that for CW
complexes.

Motivated by this, we identify classes of orbifolds which
can be built in this way using “orbifold cells” or “q-cells”. Some
of these ideas, originated by Goresky in [4], were developed in

This work was partially supported by Simons Foundation grants 210386 and
426160
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a toric framework, by Poddar and Sarkar in [7], though our
results are not restricted to toric orbifolds.

We derive conditions on the q-cell structure of an orbifold
which ensure that the integral cohomology is free of torsion
and concentrated in even degree. In particular, the toric setting
allows for a translation into conditions on the fan or characteristic
map, which suffice for a complete calculation of the integral
cohomology rings. The constructions in [6] allow for an extension
of the results to torus orbifolds as well.

References

[1] D. Angella, Cohomologies of Certain Orbifolds,
J. Geom. Phys. 171, (2013) 117–126.

[2] W. Chen and Y. Ruan, A New Cohomology Theory of
Orbifold, Communications in Mathematical Physics , 248
(2004), 1–131.

[3] T. Coates, A. Corti, Y-P. Lee and H-H. Tseng, The
Quantum Orbifold Cohomology of Weighted Projective
Spaces, Acta. Math. 202, (2009), 139–193.

[4] M. R. Goresky, Triangulation of Stratified Objects,
Proc. Amer. Math. Soc. 72, (1978), 193–200.

[5] T. Kawasaki, Cohomology of Twisted Projective Spaces
and Lens Complexes, Mathematische Annalen, 206,
(1973), 243–248.

[6] M. Masuda and T. Panov, On the Cohomology of Torus
Manifolds, Osaka J. Math., 43 (2006), 711–746.
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Locally Isometric Delone Sets
Nikolay P. Dolbilin (Steklov Mathematical Institute),

dolbilin@mi.ras.ru

The atomic structure of crystalline materials exhibits a
very high symmetry. One of the central problems of the local
theory for regular systems is to explain the genesis of the
symmetry of crystalline structures through geometric features
of their fragments of relatively small size.

An ideal crystal is a discrete set X in Rd which is a finite
union of translates of a full-rank lattice Λ. However, generally
saying, Sym(X) contains not only pure translations. Therefore,
the crystalline structure X can be described in another way:
X is a finite union of several Sym(X)-orbits. An each orbit
Sym(X)·x is a regular system, i.e., a Delone set whose symmetry
group acts point-transitively. The concept of the regular system
generalizes the concept of the lattice. Though regular systems
are arranged more complicate than lattices, by the Schoenflis-
Bieberbach theorem, any regular system is a union of several
translates of a lattice.

The regularity properties and conditions can be described
in terms of ρ-clusters. Given x ∈ X and ρ > 0, a subset of all
points x′ ∈ X with distance |xx′| ≤ ρ is a ρ-cluster Cx(ρ) of
the point x. Given x and y from X , two ρ-clusters Cx(ρ) and
Cy(ρ) are said to be equivalent if for some Euclidean isometry
g g(x) = y and g(Cx(ρ)) = Cy(ρ). For given ρ the number
of all classes of ρ-clusters in X is denoted by N(ρ). The
cluster counting function N(ρ) is a positive, integer-valued,

This work is supported by the Russian Science Foundation under grant 14-11-
00414
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non-decreasing function. For any regular system N(ρ) = 1 for
all ρ > 0.

The regularity radius is defined by the two conditions.
First, equivalence of all ρ̂d-clusters in a Delone set X ⊂ Rd,
i.e., condition N(ρ̂d) = 1, implies the regularity of the X .
Second, ρ̂d is the minimal value in the sense that for ∀ε > 0
there is a Delone set X with N(ρ̂d − ε) = 1, which is not a
regular system. As proved recently, ρ̂d ≥ d2R.

From now on we denote by X a Delone set in which all
2R-clusters are assumed to be equivalent, i.e. N(2R) = 1. We
call a setX with N(2R) = 1 locally isometric. From ρ̂d ≥ d2R
it follows that a locally isometric Delone set, generally saying,
is not a regular systems. However, for some classes of Delone
sets, e.g., for locally antipodal sets, as we showed recently for
any d, condition N(2R) = 1 implies X to be a regular system.

Now we will focus on locally isometric Delone sets in R3.
Due to long ago proven Stogrin’s lemma, for such sets the
groups Sx(2R) of the 2R-clusters are unable to contain a
rotation axis of the order to exceed 6. The list of finite groups
with this restriction is finite. Assuming each group from this
list as a group Sx(2R) for a Delone set, by means of numerous
non-trivial geometric arguments one can prove that ρ̂3 ≤ 10R.

On the background of the estimates 6R ≤ ρ̂3 ≤ 10R it is
particularly interesting that for most groups, that are possible
as Sx(2R), the condition N(2R) = 1 is sufficient for regularity
of a Delone set. Moreover, on this way we get another proof
of the estimate ρ̂3 ≤ 10R. This result represents also notable
progress towards improving the upper bound for ρ̂3.
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Geometry and Topology of
non-negatively curved manifolds

Fuquan Fang (Vice President of Capital Normal
University, Beijing), fuquan_fang@yahoo.com

This is a very brief survey on the important theme in
riemannian geometry, of manifolds with positive/non-negative
curvatures.

18



Newton polygon method and
solvability of equations by

quadratures
Askold G. Khovanskii (University of Toronto, Canada),

askold@math.toronto.edu

Consider a homogeneous linear differential equation

yn + a1(t)yn−1 + · · · + an(t)y = 0 (1)

whose coefficients ai belong to a differential field K.

Theorem 1 The equation (1) can be solved by quadratures
over K if and only if the following conditions hold: 1) the
equation (1) has a solution y1 =

∫
f (t)dt where f is an

algebraic function over K, 2) the linear differential equation of
order (n−1) obtained from (1) by the reduction of order using
the solution y1 is solvable by quadratures over the differential
field K(y1).

The standard proof (E. Picard and E. Vessiot, 1910) of Theorem 1
uses the differential Galois theory and is rather involved. In
the talk I will discuss an elementary proof of Theorem 1
based on old arguments suggested by J. Liouville, J. Ritt and
M. Rosenlicht.

J. Liouville in 1839 proved Theorem 1 for n = 2. J. Ritt in
1948 simplified his proof [1]. He used expansion of solutions
(as functions of a parameter) into converging Puiseux series.
J. Ritt studied algebraic properties of such series using the
Newton polygon method.

M. Rosenlicht in 1973 proved [2] the following theorem.

The work was partially supported by the Canadian Grant No. 156833-17.
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Theorem 2 Let n be a positive integer, and let f be a polynomial
in several variables with coefficients in a differential field K
and of total degree less than n. Then if the differential equation

y(n) = f (y, y′, y′′, . . . ) (2)

has a solution representable by quadratures over K, it has a
solution algebraic over K.

A homogeneous linear differential equation (1) of second
order can be reduced to the nonlinear Riccati equation

u′ + a1(t)u + a2(t) + u2 = 0 (3)

which is a particular case of (2) for n = 2. To prove Theorem 1
for n = 2 Liouville and Ritt proved first Theorem 2 for the
Riccati equation (3). To prove Theorem 1 in general case
M. Rosenlicht proved first Theorem 2 for a generalized Riccati
equation of order n−1. The reduction of Theorem 1 to Theorem 2
for the generalized Riccati equation is straightforward. But
Rosenlich’s proof of Theorem 2 is rather involved. It is applicable
to abstract differential fields of characteristic zero and makes
use of the valuation theory.

In the talk I will discuss a proof of Theorem 2 which
does not rely on the valuation theory. It generalizes Ritt’s
arguments (makes use of the Puiseux expansion and Newton
polyhedron method) and provides an elementary proof of the
classical Theorem 1.

References

[1] J. F. Ritt, Integration in finite terms , Columbia Univ.
Press, New York, 1948.
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[2] M. Rosenlicht, An analogue of l’Hospital’s rule, Proc.
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Linear operators with self-consistent
potential

Igor M.Krichever (Skolkovo Institute of Science and
Technology & Higher School of Economics, Moscow &

Columbia University, USA), krichev@math.columbia.edu

Many systems of nonlinear equations of mathematical physics
can be regarded as "linear equations with self-consistent
potentials". Among them are non-linear Schrödinger equation,
two-dimensional sigma-models, including the equations of n-
field. In the talk a general algebraic-geometrical scheme of
constructions of their solutions will be presented.
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Integrability property of polynomial
graph invariants

Sergei K. Lando (National Research University Higher
School of Economics, Skolkovo Institute of Science and

Technology), lando@hse.ru

The symmetric chromatic polynomial, which generalizes
the conventional chromatic polynomial, was discovered in middle
90’ies independently by R. Stanley [3] and S. Chmutov, S. Duzhin,
and S. Lando [1] (under the name of weighted chromatic polynomial).
We show that the generating function for the symmetric chromatic
polynomial of all connected graphs satisfies (after appropriate
scaling change of variables) the Kadomtsev–Petviashvili integrable
hierarchy of mathematical physics. Moreover, we describe a
large family of polynomial graph invariants giving the same
solution of the KP. The key point here is a Hopf algebra
structure on the space spanned by graphs and the behavior of
the invariants on its primitive space.

There is at least one more Hopf algebra possessing the
same property, but at the moment we are unable to predict
how to find or construct such Hopf algebras.

The talk is based on a joint work with S. Chmutov and
M. Kazarian [2].

References

[1] S. Chmutov, S. Duzhin, S. Lando, Vassiliev knot invariants
III. Forest algebra and weighted graphs, Advances in Soviet

The work was partially supported by the RSF grant, project 16-11-10316, dated
11.06.2016
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Mathematics 21 (1994), pp. 135–145.

[2] S. Chmutov, M. Kazarian, S. Lando, Polynomial graph
invariants and the KP hierarchy, arXiv:1803.09800 (2018),
14 pp.

[3] R. Stanley, A symmetric function generalization of the
chromatic polynomial of a graph, Advances in Math, 111
(1) (1995), pp. 166–194.

24



Generic torus orbit closures in
Schubert varieties

Mikiya Masuda (Osaka City University),
masuda@sci.osaka-cu.ac.jp

The standard action of a torus (C∗)n on Cn induces an
action of (C∗)n on the flag variety F l(Cn). As is well-known,
if a torus orbit is generic in F l(Cn), then its closure is a
smooth toric variety called a permutohedral variety. If a torus
orbit is not generic, its closure is not necessarily smooth but
normal ([1]); so any torus orbit closure in F l(Cn) is a toric
variety. Therefore we are naturally led to study toric varieties
which appear as torus orbit closures in F l(Cn).

The Schubert variety Xw associated to a permutation w
on n letters is a torus invariant subvariety of F l(Cn). In this
talk, I will define a generic torus orbit in Xw and discuss
the fan associated to its closure. It turns out that the generic
torus orbit closure in Xw is not necessarily smooth and the
smoothness at the fixed point w is equivalent to acyclicity
of a graph associated to w. As a result, we will see that the
smoothness of the generic torus orbit closure in Xw is closely
related to (but not necessarily same as) the smoothness ofXw.
This is joint work with Eunjeong Lee.

References

[1] J. B. Carrell, Normality of torus orbit closures in G/P , J.
of Algebra 233 (2000), 122–134.

The work was partially supported by JSPS Grant-in-Aid for Scientific Research
16K05152.
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New aspects of complexity theory for
3-manifolds

Sergei V.Matveev (Chelyabinsk State University),
svmatveev@gmail.com

We outline some points and resent results of classical complexity
theory for 3-manifolds. This includes description of special
spine theory and the theory of virtual manifolds.
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Integrable Hamiltonian systems,
naturally defined by symmetric

powers of algebraic curves
Victor M. Buchstaber (Steklov Institute of

Mathematics, RAS, Moscow, Russia),
buchstaber@mi.ras.ru

Alexander V. Mikhailov (School of Mathematics,
University of Leeds, UK and Centre of Integrable Systems,

Yaroslavl State University, Russia),
a.v.mikhailov@leeds.ac.uk

We have found k integrable Hamiltonian systems onC2k(or
on R2k, if the base field is R), naturally defined by a symmetric
power Symk(Vg) of a plain hyperelliptic curve Vg of genus g.
When k = g the symmetric power Symk(Vg) is bi-rationally
isomorphic to the Jacobian of the curve Vg and our system
is equivalent to a well known Dubrovin’s system which has
been derived and studied in the theory of finite gap solutions
(algebra-geometric integration) of the Korteweg-de-Vrise
equation. In the case k = 2 and g ≥ 1 we have found the
coordinates in which the systems obtained and their Hamiltonians
are polynomial [1]. For k = 2, g = 1, 2, 3 we present these
systems explicitly as well as we discuss the problem of their
integration [2]. In particular, if k = 2, g > 2 the solution of
the systems is not a 2g periodic Abelian function.

Most of the results obtained can be easily extended to a
wider class of curves, such as non-hyperelliptic and non-plain.

The work was partially supported by the EPSRC grant EP/P012655/1 and the
State Programme of the Ministry of Education and Science of the Russian Federation,
project 1.12873.2018/12.1
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We are also sure, but have not proved yet, that for k > 2 there
are natural variables in which the systems obtained and their
Hamiltonians are all polynomial.
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Algebraic and geometric properties of
flag Bott-Samelson varieties and
applications to representations

Dong Youp Suh (Korea Advanced Institute of Science
and Technology), dysuh@kaist.ac.kr

Naoki Fujita (Tokyo Institute of Technology),
fujita.n.ac@titech.ac.jp

Eunjeong Lee (Korea Advanced Institute of Science and
Technology), EunjeongLee@kaist.ac.kr

The notion of flag Bott manifolds is introduced in [1] as a
generalization of Bott manifold and flag variety. In this talk,
we introduce the notion of flag Bott–Samelson variety as a
generalization of Bott–Samelson variety and flag variety. Using
a birational morphism from an appropriate Bott–Samelson
variety to a flag Bott–Samelson variety, we compute Newton–
Okounkov bodies of flag Bott–Samelson varieties as generalized
string polytopes, which are applied to give polyhedral expressions
for irreducible decompositions of tensor products of G-modules.
Furthermore, we show that flag Bott–Samelson varieties are
degenerated into flag Bott manifolds with higher rank torus
actions which generalizes the toric degeneration result of
Grossberg and Karshon of Bott-Samelson varieties to Bott
manifolds. We also find the Duistermaat–Heckman measures
of the moment map images of flag Bott–Samelson varieties
with the torus action together with invariant closed 2-forms.
This talk is based on the authors preprint [2].

The work was partially supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry os Science,
ICT and Future Planning (N0. 2016R1A2B4010823).
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On the cohomology rings of
Riemannian manifolds with special

holonomy

Iskander A.Taimanov (Novosibirsk State
University&Sobolev Institute of Mathematics),

taimanov@math.nsc.ru

We demonstrate how by using the intersection theory to
calculate the cohomology of G2-manifolds constructed by using
the generalized Kummer construction. For one example we
find the generators of the rational cohomology ring and describe
the product structure.
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Dense sphere packings: state of the
art and algebraic geometry

constructions

Michael A. Tsfasman (IITP RAS & Independent
University of Moscow & CNRS - LMV),

mtsfasman@yandex.ru

How dense can we pack equal spheres in the Euclidean
space RN ? The question looks natural and is treated by
humanity at least since the end of 16th century. The first
four hundred years of research gave us the answers only in
dimensions 1, 2, and 3. Quite recently, the answers for N = 8
and N = 24 — that we always presumed to be true — were
proved by an elegant technique using modular forms [1], [2].

If we restrict ourselves to the easier situation when the
centers of the spheres form a lattice (an additive subgroup of
RN) the answer is known for N from 1 to 8, and, of course,
for N = 24. Not too much either ...

We have to ask easier questions. Can we bound the density
and how? Which constructions give us packings that, if not
being the best, are however dense enough?

Number fields and curves over finite fields provide lovely
constructions [3]. To find out their densities we need to know
a lot about our algebraic geometry objects. In particular, we
study their zeta-functions.

As usual, when we do not know the answer for a given
N we try to look at what happens when N → ∞. This
time we need to understand the asymptotic behaviour of zeta-
functions when the genus tends to ∞, cf. [4], [5], [6], [7].
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My dream is a nice theory of limit objects such as projective
limits of curves or infinite extensions of Q, as yet we are very
far from it.

Another great challenge is to construct lattice sphere packings
that are denser that those given by a random construction (so-
called Minkowski bound).
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Asymptotic of RSK-Correspondence
and new kind of Laws of Large
Numbers for Bernoulli Scheme

Anatoly M.Vershik (St.Petersburg branch of Steklov
Mathematical Institute of Russian Academy of Sciences,

St.Petersbrug State University and Moscow Institute of the
Problem of Transmission of Information),

avershik@gmail.com

The Robinson-Schensted-Knuth-correspondence (RSK -
correspondence) is widely used in combinatorics, theory of
symmetric functions and in finite mathematics. We will discuss
the analog of RSK-correspondence for infinite schemes which
was defined by Vershik-Kerov (1987) and recently studied by
Sniady-Romic (2016). In particular, we proved the new type
of LLN (Law of Large Numbers) for Knuth equivalence and
for numeration of the lattices.
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From combinatorics to geometry of
polyhedra via spectral graph theory
Alexander P.Veselov (Loughborough, UK and Moscow,

Russia), A.P.Veselov@lboro.ac.uk

For an arbitrary polygon consider a new one by joining the
centres of the consecutive edges. Iteration of this procedure
leads to a shape, which is affine equivalent to a regular polygon.
This regularisation effect is usually ascribed to Comte de Buffon
(1707-1788), but allegedly was known already to the Roman
mosaics craftsmen.

A natural analogue of this procedure for 3-dimensional
polyhedra in general degenerates, so in order to have a sensible
shape we should make some assumptions about combinatorial
structure of the initial polyhedron. I will explain some results
in this direction from [1], using the deep results from spectral
graph theory due to Colin de Verdière [2] and Lovász [3].
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On free algebras of automorphic
forms

Ernest B.Vinberg (Moscow State University),
evinberg@gmail.com

The famous theorem of Shephard–Todd–Chevalley says
that the algebra of polynomial invariants of a finite linear
group Γ acting in a complex vector space V is free (i.e. is
generated by algebraically independent polynomials) if an only
if the group Γ is generated by (complex) reflections.

A natural infinite analogue of a finite linear group is a
discrete group Γ of holomorphic transformations of a complex
symmetric domain D with the quotient D/Γ of finite volume,
acting in some homogeneousC∗-bundle overD. Here the domain
D serves as an analogue of the projective space PV , while
the total space of the C∗-bundle serves as an analogue of
the punctured vector space V . The analogues of polynomial
invariants are automorphic forms.

A simple topological consideration due to O. Shvartsman,
which is equally applicable to finite linear groups and discrete
groups of holomorphic transformations, shows that the algebra
of automorphic forms may be free only if the group Γ is
generated by reflections. It is not difficult to see that reflections
exist only in two series of symmetric domains: in the complex
balls Bn = U1,n/(U1×Un) and in Dn = O+

2,n/(SO2×On), the
symmetric domains of type IV. Moreover, if even the group Γ
is generated by reflections, the algebra of automorphic forms
need not be free. In particular, for a discrete group Γ acting

The work was partially supported by RFBR grant 16-01-00818.
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in Dn with non-compact quotient, the algebra of automorphic
forms may be free only if n ≤ 10 [1]; meanwhile there are many
reflection groups Γ acting in Dn with non-compact quotient
of finite volume for any n.

Leaving aside the particular case dimD = 1, only few
examples of free algebras of automorphic forms were known
until recently. Moreover, just one such example due to J. Igusa
(1962) was known in dimension 3 and no examples in bigger
dimensions. In [2], the speaker proved that the natural algebra
of automorphic forms for the group Γn = O+

2,n(Z) is free for
n = 4, 5, 6, 7 and determined the weights of its generators. In
the present talk, these results are extended to n = 8, 9, 10.
The weights of generators in all these cases are given in the
following table.

n Weights
4 4, 6, 8, 10, 12
5 4, 6, 8, 10, 12, 18
6 4, 6, 8, 10, 12, 16, 18
7 4, 6, 8, 10, 12, 14, 16, 18
8 4, 6, 8, 10, 12, 12, 14, 16, 18
9 4, 6, 8, 10, 10, 12, 12, 14, 16, 18
10 4, 6, 8, 8, 10, 10, 12, 12, 14, 16, 18
These results were obtained by means of an interpretation

of the quotient Dn/Γn as the moduli space of a suitable family
of multipolarized K3 surfaces.
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Simplicial James-Hopf map and
decompositions of the unstable
Adams spectral sequence for

suspensions

Jie Wu (National University of Singapore),
matwuj@nus.edu.sg

The project was carried out in the PhD thesis of Fedor
Pavutnitskiy. We use combinatorial group theory methods to
extend the definition of a classical James-Hopf invariant to
a simplicial group setting. This allows us to realize certain
coalgebra idempotents at sSet∗-level and obtain a functorial
decomposition of the spectral sequence, associated with the
lower p-central series filtration on the free simplicial group.

The talk will aim to general audience, starting from the
introduction of basic notions and techniques on the topic.
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Cyclohedron and
Kantorovich-Rubinstein polytopes
Rade T. Živaljević (Mathematical Institute of the

Serbian Academy of Sciences and Arts),
rade@mi.sanu.ac.rs

Theorem 1 ([2, Theorem 31]) There exists a quasi-metric
(asymmetric distance function) ρ on the set [n] such that
the associated Kantorovich-Rubinstein polytope (introduced in
[3]),

KR(ρ) = Conv

{
ei − ej
ρ(i, j)

| 1 6 i 6= j 6 n

}
is affinely isomorphic to the dual W ◦

n of the cyclohedron Wn.

A close relative of Theorem 1 is the following theorem. .

Theorem 2 There exists a triangulation of the boundary of
the (n−1)-dimensional type A root polytope Rootn parameterized
by proper faces of the (n− 1)-dimensional cyclohedron. More
explictly there exists a map φn : ∂(W ◦

n )→ ∂(Rootn), inducing
a piecewise linear homeomorphism of boundary spheres
of polytopes W ◦

n and Rootn. The map φn sends bijectively
vertices of ∂(W ◦

n ) to vertices of the polytope Rootn, while
higher dimensional faces of Rootn are triangulated by images
of simplices from ∂(W ◦

n).

In the lecture we will explore topological and combinatorial
consequences of these results, for example the map described
in Theorem 2 defines a ‘canonical’ quasi-toric manifold over a
cyclohedron Wn.

The work was partially supported by the Ministry of Education, Science and
Technological Development of Republic of Serbia, Grant 174034.
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Invited lectures

Log terminal singularities, platonic
tuples and iteration of Cox rings

Ivan V.Arzhantsev (Higher School of Economics,
Moscow), arjantsev@hse.ru

Looking at the well understood case of log terminal surface
singularities, one observes that each of them is the quotient of
a factorial one by a finite solvable group. The derived series of
this group reflects an iteration of Cox rings of surface singularities.
We extend this picture to log terminal singularities in any
dimension coming with a torus action of complexity one. In
this setting, the previously finite groups become solvable torus
extensions, and Cox rings are defined by trinomials corresponding
to platonic tuples.

This is a joint work with Lukas Braun, Jürgen Hausen,
and Milena Wrobel.
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All extensions of C2 by C2n × C2n are
good for the Morava K-theory

Malkhaz Bakuradze (Faculty of Exact and Natural
Sciences. Iv. Javakhishvili Tbilisi State University, Georgia),

malkhaz.bakuradze@tsu.ge

This talk is concerned with analyzing the 2-primary Morava
K-theory of the classifying spaces BG of the groups G in
the title. In particular it answers affirmatively the question
whether transfers of Euler classes of complex representations
of subgroups of G suffice to generate K(s)∗(BG). Here K(s)
denotes Morava K-theory at prime p = 2 and natural number
s > 1. The coefficient ringK(s)∗(pt) is the Laurent polynomial
ring in one variable, F2[vs, v

−1
s ], where F2 is the field of 2

elements and deg(vs) = −2(2s − 1).
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Hirzebruch Functional Equations
Elena Yu.Bunkova (Steklov Mathematical Institute),

bunkova@mi.ras.ru

The Hirzebruch functional equation is
n∑
i=1

∏
j 6=i

1

f (zj − zi)
= c (1)

with constant c and initial conditions f (0) = 0, f ′(0) = 1.
It originates in the theory of Hirzebruch genera.

The Hirzebruch genus is one of the most important classes
of invariants of manifolds. A series f (z) = z +

∑∞
k=1 fkz

k+1

with fk in a ring R determines a Hirzebruch genus of stably
complex manifolds [2]. The condition for a complex genus to
be fiber multiplicative with respect to CP n−1 is given by (1).

Well-known series of solutions of (1) include the function
determining the χa,b genus and the elliptic genus of level N
for n divisible by N .

In the talk we present classification results for solutions
of equation (1) leading to a complete classification of complex
genera that are fiber multiplicative with respect to CP n−1

for n 6 6. A topological application is effective calculation
of coefficients of elliptic genera of level N for N = 2, 3, 4, 5, 6
in terms of solutions of a differential equation with parameters
in an irreducible algebraic manifold in C4. This equation is

f (z)f ′′′(z)− 3f ′(z)f ′′(z) =

= 6q1f
′(z)2 + 12q2f (z)f ′(z) + 12q3f (z)2. (2)

It is a corollary of the functional equation from [3].

This work is supported by the Russian Science Foundation, grant 14-50-00005.
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Cohomology formulae of real toric
spaces

Suyoung Choi (Ajou University), schoi@ajou.ac.kr

For a simplicial complex K on [m] and a mod 2 simplicial
complex λ : Zm2 → Zn2 , we have the associated real toric space
MR(K,λ) := RZK/ kerλ.

In this talk, we provide an explicit R-cohomology ring
formula of a real toric space in terms ofK and Λ, where R is a
commutative ring with unity in which 2 is a unit. Interestingly,
it has a natural (Z⊕ row Λ)-grading.

Theorem 1 There are (Z⊕row Λ)-graded R-algebra isomorphisms

H∗(M) ∼=
⊕

ω∈row Λ

H̃∗−1(Kω),

where the product structure on
⊕

ω∈row Λ H̃
∗−1(Kω) is given by

the canonical maps

H̃k−1(Kω1)⊗ H̃
`−1(Kω2)→ H̃k+`−1(Kω1+ω2)

which are induced by simplicial maps Kω1+ω2 → Kω1 ? Kω2
when ? denotes the simplicial join.

If time allows, we also discuss about the integral cohomology
of real toric space. This work is partially jointly with Hanchul
Park [1] and Li Cai [2].
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Billiards within quadrics and
Chebyshev type polynomials

Vladimir Dragović (The University of Texas at Dallas),
Vladimir.Dragovic@utdallas.edu

A comprehensive study of periodic trajectories of billiards
within ellipsoids in d-dimensional Euclidean space is presented.
The novelty of the approach is based on a relationship established
between periodic billiard trajectories and extremal polynomials
on the systems of d intervals on the real line. By leveraging
deep, but yet not widely known results of the theory of generalized
Chebyshev polynomials, fundamental properties of billiard
dynamics are proven for any d, viz., the monotonicity of sequences
of winding numbers and the injectivity of frequency maps. As
a byproduct, for d = 2 a new proof of the monotonicity of
the rotation number is obtained and the result is generalized
for any d. The case study of trajectories of small periods
T , d ≤ T ≤ 2d is given. It is proven that all d-periodic
trajectories are contained in a coordinate-hyperplane and that
for a given ellipsoid, there is a unique set of caustics which
generates d + 1-periodic trajectories. A complete catalog of
trajectories with small periods is provided for d = 3. This is
a joint work with M. Radnović [1].
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Surgery and cell-like maps
Alexander N.Dranishnikov (University of Florida and

Steklov Mathematical Institute), dranish@ufl.edu

The main goal of surgery theory is the classification of
manifolds and manifold structures. The structure set SCAT (X)
of the Poincare complex X measures the number of distinct
CAT -manifolds in the simple homotopy class of X where
CAT is the category. The surgery theory was initiated for
CAT = DIFF but it works better for CAT = TOP . In this
talk we consider the later but then we apply our results to
differentiable manifolds.

Contrary to the DIFF, in the case of topological manifolds
STOP (M) is a group. We define a subset SCE(M) ⊂ STOP (M)
generated by homotopy equivalences h : N → M that come
as homotopy lifts of g in the diagram

N
h−−→ M

g

y f

y
X

=−−→ X

(1)

where f and g are cell-like maps. Quinn’s theorem implies that
ifX is finite dimensional then h is homotopic to a homeomorphism
and hence h defines a trivial element [h] = 0 ∈ STOP (M).
Thus, to have SCE(M) 6= ∅ one needs use cell-like maps that
raise dimension to infinity. Such maps were constructed in the
80s [2]. The construction is based on Edwards’ theorem and
results of Anderson-Hodgkin and Buchstaber-Mishchenko [1].
The important feature of the construction is that a cell-like
map of a manifold can kill a K-theory class [3].
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We give a complete description of SCE(M) which is a bit
technical. A special case of that is

Theorem 1 For any manifold M the set SCE(M) is a group.
For a simply connected manifold M with finite π2(M) the

group SCE(M) equals the odd torsion subgroup of STOP (M).

As a corollary we construct two smooth nonhomeomorphic
manifolds that admit cell-like maps with the same image. We
use this result to construct exotic convergence of Reimannian
manifolds in the Gromov-Hausdorff moduli space.

This is a joint work with Steve Ferry and Shmuel Weinberger [4].
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Exchange classes of rectangular
diagrams, Legendrian knots, and the

knot symmetry group
Ivan A.Dynnikov (Steklov Mathematical Institute of

Russian Academy of Sciences),
dynnikov@mech.math.msu.su

Rectangular diagrams are a particularly nice way to represent
knots and links in the three-space. The crucial property of
this presentation is the existence of a monotonic simplification
algorithm for recognizing the unknot [I.D., 2006]. The present
research (joint with M.Prasolov) is motivated by an attempt
to extend the monotonic simplification procedure to arbitrary
knot types.

Another nice feature of rectangular diagrams is their relation
to Legendrian knots. Namely, each rectangular diagram defines,
in a very natural way, two Legendrian knots, one with respect
to the standard contact structure, and the other with respect
to the mirror image of the standard contact structure. These
two Legendrian knots always have an important mutual
independence property [I.D., M.Prasolov, 2013], which is roughly
this: any Legendrian stabilization and destabilization of each
of the two Legendrian types can be done without altering
the other, by applying elementary moves to the rectangular
diagram.

Among elementary moves defined for rectangular diagrams,
there are those that preserve both Legendrian knot types
associated with the diagram. These are exchange moves. An
exchange class is a set of rectangular diagrams that can be
obtained from a fixed diagram by exchange moves.
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Let K be a topological knot type, and let L1 (respectively,
L2) be a ξ+-Legendrian (respectively, ξ−-Legendrian) knot
types of topological typeK, where ξ+ and ξ− are the standard
contact structure and its mirror image, respectively. There are
symmetry groups G, H1, H2 naturally associated with K, L1,
and L2, respectively.

Theorem 1 In the above settings, the set of exchange classes
representing L1 and L2 simultaneously, is in one-to-one
correspondence with the set H1\G/H2 of double cosests.

The proof uses, among other things, a trick from a joint
work of I.Dynnikov and V.Shastin (in preparation).

The necessary definitions will be given in the talk.
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On the Matveev’s complexity of knot
complements in thickened surfaces

Evgeny A. Fominykh (Chelyabinsk State University),
efominykh@gmail.com

Recently, A. Akimova, S. Matveev and L. Nabeeva tabulated
all prime knots in a thickened torus, presented by diagrams
with up to 5 crossings, and also all prime knots in a thickened
Klein bottle, presented by diagrams with up to 3 crossings. In
the talk we will discuss the Matveev’s complexity values for
the complements of these knots and the upper bound of the
complexity for complements of some infinite series of knots in
a thickened torus.

The work was supported by the Russian Science Foundation (Grant 16-11-10291).
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On model of Josephson effect,
constrictions and transition matrix of

double confluent Heun equation

Alexey A. Glutsyuk (CNRS, ENS de Lyon; HSE,
Moscow), aglutsyu@ens-lyon.fr

In 1973 B.Josephson received Nobel Prize for discovering
a new fundamental effect concerning a Josephson junction, –
a system of two superconductors separated by a very narrow
dielectric: there could exist a supercurrent tunneling through
this junction. We will discuss the model of the overdamped
Josephson junction, which is given by a family of first order
non-linear ordinary differential equations on two-torus:{

φ̇ = −sinφ
ω + B

ω + A
ω cos τ

τ̇ = 1
(1)

The frequency parameter ω is fixed; the parameters B and
A are called respectively the abscissa, and the ordinate.

It is important to study the rotation number of system (1)
as a function ρ = ρ(B,A) and to describe the phase-lock areas:
its level sets Lr = {ρ = r} with non-empty interiors. They
were studied by V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi.
In 2010 they observed in [1] the following quantization effect:
phase-lock areas exist only for integer values of the rotation
number. It is known that each phase-lock area is a garland
of infinitely many bounded domains going to infinity in the

The work was supported by RSF grant FF-18-41-05003
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vertical direction; each two subsequent domains are separated
by one point called constriction.

Conjecture 1. All the constrictions of every phase-lock
area Lr lie in its axis Λr = {B = rω}.

It was proved in [2] that Conjecture 1 holds for ω ≥ 1,
and in general, for every ω > 0 all the constrictions in Lr
have abscissas B = ωl, l ∈ Z, l ≡ r(mod2), l ∈ [0, r].

V.M.Buchstaber and S.I.Tertychnyi observed that family
(1) is equivalent to a special family of second order linear
complex differential equations on the Riemann sphere with
two irregular nonresonant singularities at zero and at infinity,
the well-known double confluent Heun equations.

We present the following new result of the speaker.
Theorem 2. Consider the non-constriction point Pr of

intersection of the boundary of the phase-lock area Lr with
its axis Λr with the biggest ordinate. The phase-lock area Lr
contains the ray in Λr bounded from below by the point Pr.

Theorem 2 is proved via studying the Heun equation: its
Stokes matrices and the transition matrix between its appropriate
canonical solution bases "at zero"and "at infinity".
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Schubert calculus and quantum
integrable systems

Vassily G.Gorbounov (Aberdeen University&
International Laboratory of Representation Theory and
Mathematical Physics, HSE), vgorb10@gmail.com

In the talk we will describe a new feature of the classical,
equivariant and quantum Schubert calculus which holds for
all types of the classical Lie groups. As the main example
we will use the type A Grassmanians. The usual definition of
the Schubert cycles involves a choice of a parameter, namely a
choice of a full flag. Studying the dependence of the construction
of the Schubert cycles on these parameters in the equivariant
cohomology leads to an interesting solution to the quantum
Yang Baxter equation and hence connects the Schubert calculus
to the theory of quantum integrable systems. In this talk we
will describe the corresponding quantum integrable systems,
who turn out to be two 5 vertex lattice models, in geometric
representation theory terms and outline some unexpected
consequences of this connection for Schubert calculus. We
will also explain how the above is connected to the recent
developments of modern theory of quantum groups developed
by Nekrasov Shatashvilli Okounkov and Maulik.
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Polytopal realizations of cluster,
subword and accordion complexes

and representation theory

Mikhail A.Gorsky (Bielefeld University),
mgorsky@math.uni-bielefeld.de

Associahedra are a family of polytopes appearing in different
branches of mathematics. The were first introduced by D. Tamari
and rediscovered by J. Stasheff in the early 1960s in the context
of the associativity. The vertices of the n−dimensional
associahedron bijectively correspond to the triangulations of
the (n+3)−dimensional regular polygon, and the edges correspond
to flips. This is one of many combinatorial descriptions of the
structure of the associahedron. Later, there were introduced a
lot of generalizations of this family of polytopes. I will discuss
three of them, their different geometric realizations and their
relation to the representation theory.

In early 2000s, S. Fomin and A. Zelevinsky introduced the
notion of cluster algebras in order to study dual canonical
bases in double Bruhat cells and the phenomenon of total
positivity. A cluster algebra is defined by a quiver, or an
oriented graph, without loops or 2-cycles.It has a set of generators,
called cluster variables, that are grouped in overlapping subsets
of a fixed cardinality, called clusters. Relations correspond to
the operation of mutation between clusters different only in
one cluster variable. One may thus study abstract simplicial
complexes whose vertices correspond to cluster variables, maximal
simplices correspond to clusters, and edges correspond to mutations.
These are called cluster complexes. Fomin showed that for
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quivers of finite Dynkin type, these complexes are polytopal,
and in type An the dual polytope is the n−dimensional
associahedron. More generally, the polytopes dual to cluster
complexes are called generalized associahedra. For any initial
cluster, one may construct 2 different geometric realizations
of a generalized associahedron. Their dual fans are the d−fan
and the g−fan of the algebra, encoding all its algebraic structure.
They also encode the so-called wall and chamber structure of
the path algebra of the corresponing quiver. The toric variety
associated to the g−fan is the toric degeneration of the
corresponding cluster variety.

Let W be a finite Coxeter group, S = {s1, . . . , sn} be
a set of simple reflections generating W. Consider a word
Q := Q1 . . .Qm in the alphabet of simple reflections (Qi ∈ S
∀ i = 1, . . . ,m) and an element π of the groupW. The subword
complex ∆(Q; π) is a pure simplicial complex on the set of
vertices {Q1, . . . ,Qm} corresponding to the letters (more precisely,
to their positions) in the word Q. A set of vertices yields a
simplex if the complement in Q to the corresponding subword
contains a reduced expression of π. The maximal simplices
correspond to the complements of reduced expressions of π in
the word Q . Subword complexes were introduced by A. Knutson
and E. Miller in the article [5]. They showed in [6] that ∆(Q; π)
is spherical if and only if the Demazure product of the word
Q equals π; otherwise, ∆(Q; π) is a triangulated ball. For
spherical subword complexes, there arise natural questions of
the existence, of the combinatorial description and of geometric
realizations of their polar dual polytopes. In the group W
there exists the unique longest element denoted by wo.We will
consider subword complexes of the form ∆(c wo;wo), where
c is a reduced expression of a Coxeter element, wo is an
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arbitrary reduced expression of wo. Such complexes admit a
realization by brick polytopes of V.Pilaud–C. Stump [7] that
we will denote by B(c wo;wo). C. Ceballos, J.-P. Labbé and
C. Stump [1] proved that the complexes ∆(c wo(c);wo), where
wo(c) is the so-called c-sorting word forwo, are the generalized
cluster complexes of type W. Therefore, the polytopes
B(c wo(c);wo) realize the c−associahedra of type W. The
choice of a Coxeter element c is equivalent to the choice of
a quiver Q being an orientation of the Coxeter diagram of
the group W. The dual fan to the brick polytope realizing the
generalized associahedron is the g−fan of the corresponding
cluster algebra.

The choice of an arbitrary reduced expression wo of the
element wo is equivalent to the choice of a Dyer total order
on the set of positive roots of the corresponding root system
Φ, which in turn is equivalent to the choice maximal green
sequence of mutations of the quiver Q of a (non-necessarily
linear) stability condition on the category of representations of
Q over some ground field. Thus, one can introduce the notion
of (c,wo)-stable positive roots forming the set Stab(c,wo),
resp. stable representations. In [2] (see also [3] for more details),
i prove the following theorem.

Theorem 1 (i) The vertices of ∆(c wo;wo) and, equivalently,
the facets of B(c wo;wo) are in a one-to-one correspondence
with the simple negative and the (c,wo)-stable positive roots
in the system Φ.

(ii) Let expressions wo, w′o be such that Stab(c,wo) ⊂
Stab(c,w′o). Then the complex ∆(c w′o;wo) can be obtained
from the complex ∆(c wo;wo) by a sequence of edge subdivisions.
Similarly, a ceratin geometric realization of the polytope
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B(c w′o;wo) can be obtained from the polytope realizing
B(c wo;wo) by a sequence of truncations of faces of codimension 2.
In particular, for any expression, B(c wo;wo) is combinatorially
equivalent to a 2−truncated cube.

The polytopes for words related by an elementary braid
move of orderm either coincide, or are related by a truncation
of one face of codimension 2 (m− 2) times. This comes from
the fact such an operation might change the set of stable
positive roots only in one root subsystem of rank 2. We call
the polytopes B(c wo;wo) stability associahedra. Theorem 1
implies that all the stability associahedra and, in particular,
all generalized associahedra are 2−truncated cubes. The dual
fans of this realization of generalized associahedra are the
d−fans of cluster algebras. In a joint work in progress with
Vincent Pilaud and Salvatore Stella, we work on the definition
algebras whose structure is naturally encoded by these d−fans
and by the g−fans given by the brick polytopes.

Theorem 1 provides a partial order on the set of reduced
expressions ofwo given by the inclusion of sets of stable positive
roots. In type An with the linear orientation, the resulting
poset is isomorphic with the poset of triangulations of the
cyclic polytope of dimension 3 with the 2nd (higher) Tamari-
Stasheff order. In spirit of Reading’s Cambrian lattices, we
call it the 2nd higher Cambrian order of type (W, c). In [4]
i show that in terms of complexes, or corresponding fans,
Theorem 1 can be generalized to any acyclic quiver Q, and
we get a semi-lattice of maximal green sequences. For the
corresponding complexes, the order is given by the order of
edge subdivisions. The choice of a maximal green sequence is
equivalent to the choice of a (non-necessarily linear) stability
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condition with finitely many stable objects.
Another generalization of associahedra is given by polytopes

dual to so-called accordion complexes. Their vertices correspond
to certain dissections of regular polytopes, instead of triangulations.
Recently, their combinatorics and geometric realizations were
linked to the wall and chamber structure of gentle algebras. I
will overview the progress in this area.

Theorem 1 provides a partial order on the set of maximal
green sequences given by the inclusion of sets of stable positive
roots. In type An with the linear orientation, the resulting
poset is isomorphic with the poset of triangulations of the
cyclic polytope of dimension 3 with the 2nd (higher) Tamari-
Stasheff order. In spirit of Reading’s Cambrian lattices, we
call it the 2nd higher Cambrian order of type (W, c). In [4]
i show that in terms of complexes, or corresponding fans,
Theorem 1 can be generalized to any acyclic quiver Q, and
we get a semi-lattice of maximal green sequences. For the
corresponding complexes, the order is given by the order of
edge subdivisions. The choice of a maximal green sequence is
equivalent to the choice of a (non-necessarily linear) stability
condition with finitely many stable objects.
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LS-category of moment-angle
manifolds and Massey products

Jelena Grbić (University of Southampton, UK),
j.grbic@soton.ac.uk

We give various bounds for the Lusternik-Schnirelmann
category of moment-angle complexes ZK and show how this
relates to vanishing of Massey products inH∗(ZK). In particular,
we characterise the Lusternik-Schnirelmann category of moment-
angle manifolds ZK over triangulated d-spheres K for d ≤ 2,
as well as higher dimension spheres built up via connected
sum, join, and vertex doubling operations. This characterisation
is given in terms of the combinatorics of K, the cup product
length of H∗(ZK), as well as a certain Massey products. Some
of the applications include calculations of the Lusternik –
Schnirelmann category and the description of conditions for
vanishing of Massey products for moment-angle complexes
over fullerenes and k-neighbourly complexes.
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From real regular multisoliton
solutions of KP-II to finite-gap

solutions

Simonetta Abenda (Dipartimento di Matematica,
Università di Bologna, Italy), simonetta.abenda@unibo.it
Petr G.Grinevich (L.D. Landau Institute for Theoretical

Physics, Chernogolovka & Lomonosov Moscow State
University), pgg@landau.ac.ru

The real regular mutlisoliton solutions of the Kadomtsev-
Petviashvili-II equation are parametrized by the points of totally
non-negative Grassmannians. Using the Postnikov’s classification
of the of totally non-negative Grassmannians in terms of Le-
networks we associate to each positroid cell a canonical rational
reductive M-curve, and the points of the positroid cell are
parametrized by real divisors on these curves satisfying the
regularity conditions.

By perturbing these curves one naturally obtains real regular
finite-gap solution of KP-II, which are quasipariodic structures
formed by solitons. The first nontrivial example is GrTP(2, 4),
i.e. the set of points in Gr(2, 4) with all Plücker coordinates
positive. We explicitly construct the corresponding spectral
curve and its regular perturbation. The last one is a regular
M-curve of genus 4.

The work was partially supported by GNFM-INDAM and RFO University of
Bologna. The second author (P.G.) was partially supported by FASO Russia program
No 0033-2018-0009, and by by the Russian Foundation for Basic Research, grant 17-
01-00366
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Combinatorial Hopf algebras and
generalized permutohedra

Vladimir Grujić (University of Belgrade),
vgrujic@matf.bg.ac.rs

Hopf algebra structures naturally arise if we know how to
compose and decompose combinatorial objects. In addition,
a multiplicative functional gives rice to a combinatorial Hopf
algebra. If we employ the formalism of combinatorial Hopf
algebras we can reconstruct various old and obtain some new
algebraic, enumerative combinatorial invariants.

The generalized Dehn-Sommerville relations are defined in
an arbitrary combinatorial Hopf algebra and we solve these
relations in the case of hypergraphs [1]. This is the first non-
standard solution different from the classical that is given by
eulerian posets.

The universal morphism of combinatorial Hopf algebras
produces a quasisymmetric function invariant. To a variety
of combinatorial objects we can associate convex polytopes
which are generalized permutohedra. In general, this
quasisymmetric function invariant has a geometric meaning as
the enumerator function of lattice points associated to generalized
permutohedra. The prominent example is the Stanley chromatic
symmetric function of simple graphs which is interpreted as
the enumerator function of lattice points associated to graphic-
zonotopes. We studied the cases of nestohedra and matroid
base polytopes [2], [3].

This work was supported by the Ministry of Education, Science and Technological
developments of Republic of Serbia, Grant No.174034.
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Lower Bounds for the Degree of a
Branched Covering of a Manifold
DmitryV.Gugnin (Lomonosov Moscow State

University), dmitry-gugnin@yandex.ru

Recall, that an n-fold PL branched covering f : XN → Y N

of closed connected PL manifolds is any Open and PL map
XN → Y N , which is, a fortiori, finite-to-one, and, moreover,
n = maxy∈Y |f−1(y)| <∞. We consider the following

Problem (A). Suppose XN and Y N are closed connected
oriented PL manifolds satisfying the following 4 conditions:

(1) For both manifolds their integral homology have no
torsion;

(2) The target Y is simply-connected;
(3) There exist maps fm : X → Y with deg(fm) = m for

all m ∈ N;
(4) There exists a map f : X → Y which is a PL n-fold

branched covering for some n ≥ 2.
The problem is to find any lower bounds for the minimal

n in item 4, expressed in terms of topology (cohomology or
homotopy) of the manifolds X and Y .

Recall, that the rational cup-length L(X) of a space X is
defined as the greatestm ∈ N for which there exist homogeneous
elements a1, a2, . . . , am ∈ H∗≥1(X ;Q) with nonzero product
a1a2 . . . am 6= 0.

Theorem 1 (I.Berstein-A.L.Edmonds’1978) Suppose that
f : XN → Y N is a PL (or TOP) n-fold branched covering of

The work was partially supported by the Russian Foundation for Basic Research
under grant 16-51-55017 and 17-01-00671.
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closed connected orientable PL (or TOP) manifolds. Then the
following estimate holds:

n ≥ L(X)

L(Y )
.

Theorem 2 (J.W.Alexander’1920) For any closed connected
oriented PL manifold XN there exists a PL branched covering
XN → SN .

Note that, in Alexander’s construction, the degree n of
such a branched covering XN → SN is always greater than
N ! and increases with the number of maximal simplices of the
manifold XN .

Let us introduce the crucial notion of the gtn-property
(from words “group transfer”). Let n ≥ 2 be any fixed integer.
By a tower of graded rings (algebras) we mean a pair consisting
of a graded commutative ring A∗ = ⊕∞i=0A

i without 2-torsion
and any subring B∗ of A∗.

Definition 1 We say that a tower (A∗, B∗) has the gtn-property,
if given any homogeneous elements a1, a2, . . . , an ∈ A∗≥1,
there exist homogeneous elements bI ∈ B∗≥1, I ⊂ {1, 2, . . . , n},
of appropriate degrees, for which the following relation holds:

a1a2 . . . an = b1,2,...,n+b2,3,...,na1+b1,3,4,...,na2+. . .+b1,2,...,n−1an

+
∑
i<j

b1,2,...,̂i,...,ĵ,...,naiaj + . . . + b1a2a3 . . . an + b2a1a3a4 . . . an

+ . . . + bna1a2 . . . an−1.

The following lemma is our key result (see [4]).
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Lemma 1 (D.G.’2018) Let n ≥ 2 be any fixed integer. Suppose
a graded commutative Z[1/n!]-algebra C∗ with an action of
any group G (finite or infinite) and a subgroup H ⊂ G of
index n are given. Let A∗ := CH, and let B∗ := CG, so
that B∗ ⊂ A∗ is a tower of Z[1/n!]-algebras. Then this tower
(A∗, B∗) has the gtn-property.

The most nontrivial part of the work under consideration is
this purely algebraic Lemma 1. Its proof requires new technics,
— so called Frobenius n-homomorphisms of graded algebras,
which was introduced and developed by the author in [3].
The theory of Frobenius n-homomorphisms of commutative
ungraded algebras was created by V.M.Buchstaber and E.G.Rees
in several papers starting from 1996.

Let us note, that the proof of our Lemma 1 cannot be
simplified (up to the author’s knowledge), even when the group
G is finite and the algebraC∗ is a finite-dimensionalQ-algebra.

Suppose G is a finite group, H ⊂ G is a subgroup of index
n, and W is a compact polyhedron with the simplicial action
of the group G. Then the prominent Transfer Theorem
states that the corresponding PL map f := πG,H : W/H →
W/G induces the monomorphism

f ∗ : H∗(W/G;Q)→ H∗(W/H ;Q)

which is, moreover, equivalent to the inclusion H∗(W ;Q)G ⊂
H∗(W ;Q)H .

For the n-fold PL branched covering f : XN → Y N of
closed connected PL manifolds it can be rather easily constructed
a compact polyhedron WN with a simplicial action of the
symmetric group Sn such that X = W/Sn−1, Y = W/Sn and
f = πSn,Sn−1.
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The Berstein-Edmonds’ estimate can be easily derived from
Lemma 1. Moreover, in many cases our Lemma 1 gives much
better lower bound for the n from Problem (A). For example,
the following theorem holds (see [4]).

Theorem 3 (D.G.’2018) Let k ≥ 1 and N ≥ 4k + 2 be any
fixed integers. Let XN := TN be the N -torus, and Y N :=
S2 × . . . × S2 × SN−2k. Then any n-fold branched covering
f : XN → Y N satisfies the condition n ≥ N − 2k.

Here, Berstein-Edmonds’ estimate gives only n ≥ N/(k + 1).
Moreover, if we consider branched coverings in Problem (A),
THE BEST lower bound for n, known before our Lemma 1,
was the Berstein-Edmonds’ estimate.
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Algebraic links in the Poincaré sphere
and the Alexander polynomials

Sabir M. Gusein-Zade (Lomonosov Moscow State
University), sabir@mccme.ru

The Alexander polynomial in several variables is defined
for links in three-dimensional homology spheres, in particular,
in the Poincaré sphere: the intersection of the surface S =
{(z1, z2, z3) ∈ C3 : z5

1+z3
2+z2

3 = 0} (theE8 surface singularity)
with the 5-dimensional sphere S5

ε = {(z1, z2, z3) ∈ C3 : |z1|2 +
|z2|2 + |z3|2 = ε2}. An algebraic link in the Poincaré sphere
is the intersection of a germ of a complex analytic curve in
(S, 0) with the sphere S5

ε of radius ε small enough. It is well
known that the Alexander polynomial in several variables of
an algebraic link in the usual 3-sphere S3

ε = {(z1, z2) ∈ C2 :
|z1|2 + |z2|2 = ε2} (that is of the intersection of a plane
curve singularity (C, 0) ⊂ (C2, 0) with S3

ε) determines the
topological type of the link. We discuss to which extend the
Alexander polynomial in several variables of an algebraic link
in the Poincaré sphere determines the topology of the link.
There exist analytic curves in (S, 0) such that the Alexander
polynomials of the corresponding links coincide, but the curves
have combinatorially different resolutions. (In this case it is
not clear whether or not the links are topologically equivalent.)
The dual graph of the minimal resolution of the E8 surface
singularity has the standard E8-form. We show that, if the
strict transform of a curve in (S, 0) does not intersect the
component of the exceptional divisor of the minimal resolution

The work was partially supported by the grant 16-11-10018 of the Russian Science
Foundation
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corresponding to the end of the longest tail in the corresponding
E8-diagram, then its Alexander polynomial determines the
combinatorial type of the minimal resolution of the curve and
therefore the topology of the corresponding link.

Alexander polynomial of an algebraic link in the Poincaré
sphere coincides with the Poincaré series of the filtration defined
by the corresponding curve valuations. We show that, under
conditions similar for those for curves, the Poincaré series of a
collection of divisorial valuations determines the combinatorial
type of the minimal resolution of the collection.

The talk is based on joint results with A. Campillo and
F. Delgado
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Topology of complexity one quotients

Yael Karshon (University of Toronto),
karshon@math.toronto.edu

With Susan Tolman, in the context of our classification
of complexity one Hamiltonian torus actions, we describe the
topology of the quotients of such actions.
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Homotopy poisson brackets and thick
morphisms

Hovhannes M.Khudaverdian (School of Mathematics,
University of Manchester), khudian@manchester.ac.uk

For an arbitrary manifold M , consider the supermanifolds
ΠTM and ΠT ∗M , where Π is the parity reversion functor.
The supermanifold ΠTM has an odd vector field that can be
identified with the de Rham differential d; functions on it can
be identified with differential forms onM . The supermanifold
ΠT ∗M has a canonical odd Poisson bracket [ , ] (the antibracket);
functions on it can be identified with multivector fields on
M . An arbitrary even function P on ΠT ∗M which obeys the
master equation [P, P ] = 0 defines an even homotopy Poisson
structure on the manifold M and an odd homotopy Poisson
structure (the "higher Koszul brackets") on differential forms
onM . We construct a nonlinear transformation from differential
forms endowed with the higher Koszul brackets to multivector
fields considered with the antibracket by using the new notion
of a thick morphism of supermanifolds, a notion recently
introduced.
(Based on joint work with Th. Voronov.)
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Relative phantom maps
Daisuke Kishimoto (Kyoto University),

kishi@math.kyoto-u.ac.jp

De Bruijn-Erdős theorem [1] states that the chromatic
number of an infinite graph equals the maximum of the chromatic
numbers of its finite subgraphs. To a graph one associates a
simplicial complex called the box complex, and the chromatic
number of a graph is related with a homotopy invariant of its
box complex called the index. Then one may ask whether the
index of a box complex has the same property as the chromatic
number stated in de Bruijn-Erdős theorem. This leads one to
the relative version of a phantom map, where a phantom map
[3] is a map from a CW-complex such that its restriction to
any finite subcomplex is trivial.

In this talk, the triviality of a relative phantom map will
be discussed, and criteria for triviality in terms of rational
cohomology will be given. Then a problem on a relative phantom
map coming from combinatorics will be partially solved.

This is joint work with K. Iriye and T.Matsushita [2].
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Moment-angle manifolds and linear
programming

Andrey A.Kustarev, kustarev@gmail.com

Moment-angle manifolds have originated in [1] and studied
in a greater detail in [2]. Our motivation starts with the following
statement:

Lemma 1 Any linear function on the convex polytope gives
rise to a Morse function on the corresponding real moment-
angle manifold (Morse-Bott in the complex case).

So maximizing a linear function over a simple convex polytope
is equivalent to maximizing some Morse function on the
corresponding real moment-angle manifold.

Optimizing a linear function on a convex polytope is a
very well-known problem, known as linear programming. One
can use gradient descent on the moment-angle manifold to
optimize a linear function on the original polytope, thus solving
a linear programming problem. Convex optimization methods
operating in the polytope interior are known as interior-point
(or path-following) methods. They started to gain popularity
with [3]; see [4].

Moment-angle manifolds are well-defined for simple polytopes
which are dense in the space of all convex polytopes. Since
the method is interior-point, it can be used to tackle generic
convex linear problems as well.

An alternative formulation of the method is running a
gradient flow on a polytope itself but using a pushforward
of Riemannian metric from the moment-angle manifold to
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form a gradient. Riemannian metrics in the context of convex
optimization have been discussed in [5].

The code for the method is available online:

• https://github.com/kustarev/malp-python (Python version);

• https://github.com/kustarev/malp-cpp (C++ version).

The code also contains examples of solving actual optimization
problems: optimizing linear function on a high-dimensional
simplex and solving a portfolio optimization task.
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Algebras from oriented triangulated
manifolds

Zhi Lü (School of Mathematical Sciences, Fudan
University, Shanghai, P.R. China.), zlu@fudan.edu.cn

First, by extracting the idea and techniques of classical
cluster algebras, a class of algebras, named as bistellar cluster
algebras, are constructed from closed oriented triangulated
even-dimensional manifolds by performing middle-dimensional
bistellar moves. This class of algebras exhibit the algebraic
behaviour of middle-dimensional bistellar moves and do not
satisfy the classical cluster algebra axiom: "every cluster variable
in every cluster is exchangeable". Thus the construction of a
bistellar cluster algebras has a quite difference from one of
a classical cluster algebra. Next, using the bistellar cluster
algebras and the techniques of combinatorial topology, we
construct a direct system associated with a set of PL homeomorphic
PL manifolds of dimension 2 or 4, and we then show that the
limit of this direct system is a PL invariant. This is a joint
work with Alastair Darby and Fang Li.

The work was partially supported by grants from NSFC (No. 11371093, 11431009,
11671350, 11571173 and 11661131004)
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Poincaré’s rotation number in
dynamics and knot theory

Andrei V.Malyutin (St. Petersburg Department of
Steklov Institute of Mathematics RAS; St. Petersburg State

University), malyutin@pdmi.ras.ru

Let ϕ : S1 → S1 be an orientation preserving homeomorphism
of the circle S1 = R/Z, and let ϕ̃ : R→ R be a lift of ϕ. Then,
for each x ∈ R, the limit

τ (ϕ̃) := lim
n→∞

ϕ̃n(x)

n

exists and does not depend on the choice of x. This limit
is called the translation number of ϕ̃. Considered modulo
integers, it is called the rotation number of ϕ.

These invariants were first defined by Poincaré and play a
significant rôle in modern dynamics [1]–[3].

It turns out that Poincaré’s rotation and translation numbers
have useful applications in knot theory, braid theory, the theory
of mapping class groups of surfaces [4]–[9]. We will overview
main concepts and results in this research area.
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Lim colim versus colim lim

Sergey A.Melikhov (Steklov Mathematical Institute of
Russian Academy of Sciences), melikhov@mi.ras.ru

The use of lim1 (and in extreme cases also lim2, lim3, . . . )
provides a reasonable description of any limiting behaviour in
homology and cohomology for simplicial complexes (or CW
complexes) and, on the other hand, for compact spaces. In
contrast, homology and cohomology (even ordinary) of non-
triangulable non-compact spaces have been very poorly
understood until recently, due to the lack of any clues on how
direct limits (colim) interact with inverse limits (lim). I will
talk about a few first steps in this direction.

1) Milnor proved two uniqueness theorems for axiomatic
(co)homology: for compacta (1960) and for infinite simplicial
complexes (1961). We obtain their common generalization: the
Eilenberg–Steenrod axioms along with Milnor’s map excision
axiom and a (non-obvious) common generalization of Milnor’s
two additivity axioms suffice to uniquely characterize
(co)homology of Polish spaces (=separable complete metric
spaces). The proof provides a combinatorial description of
the (co)homology of a Polish space in terms of a simplicial
(co)chain complex satisfying a symmetry of the form
lim colim = colim lim.

2) A situation in which lim and colim do not commute,
but their “commutator” can be computed in terms of lim1

and a new functor lim1
fg. Namely, there are two well-known

approximations of the homology of a Polish space X (which
themselves do not satisfy even the Eilenberg–Steenrod axioms):
“Čech homology” qHn(x) and “Čech homology with compact
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supports” pHn(X). The homomorphism pHn(X)→ qHn(X),
which is a special case of the natural map colim lim →
lim colim, need not be either injective (P. S. Alexandrov,
1947) or surjective (E. F. Mishchenko, 1953), but it is still
unknown whether it is surjective for locally compact X . It
turns out that for locally compact X , the dual map in
cohomology pHn(X)→ qHn(X) is surjective and we are able
to compute its kernel. This computation has applications to
embeddability of compacta inRm. The original map pHn(X)→
qHn(X) is surjective and its kernel is computed if X is a
“compactohedron”, i.e. contains a compactum whose complement
is a polyhedron.

3) A combinatorial homotopy theory associated with the
axiomatic homology and cohomology. Namely, “fine shape” —
a common correction of strong shape and compactly generated
strong shape (which differ from each other essentially by
permuting a lim with a colim) for Polish spaces, obtained
by taking into account the topology on the indexing sets.
For compacta, fine shape coincides with strong shape, and
in general, its definition can be said to reconcile Borsuk’s and
Fox’s approaches to shape. Both Steenrod–Sitnikov homology
and Čech cohomology (the ones satisfying the axioms) are
proved to be invariant under fine shape, which cannot be said
of any of the previously known shape theories. In fact, for a
(co)homology theory, fine shape invariance is a strong form of
homotopy invariance which implies the map excision axiom.
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Polynomial Lie algebras and growth
rates of their subalgebras

Dmitry V. Millionshchikov (Lomonosov Moscow State
University and Steklov Mathematical Institute of RAS),

mitia_m@hotmail.com

The notion of Lie-Reinhart algebra [1] generalises the properties
of the Lie algebra V ect∞(M) of vector fields on a smooth
manifoldM viewed as a module over the commutative algebra
C∞(M) of smooth functions on M .

Definition 1 Let R be a commutative unital ring and A a
commutative R-algebra. A pair (A,L) is called a Lie-Reinhart
algebra if

1) L is a Lie algebra over R which acts on (the left of) A
(by derivations), i.e.

X(ab) = X(a)b + aX(b),∀a, b ∈ A,∀X ∈ L;

2) g is an A-module.
The pair (A,L) must satisfy the compatibility conditions

that are
[X, aY ] = X(a)Y + a[X, Y ],∀X, Y ∈ L,∀a ∈ A;

(aX)(b) = a(X(b)), ∀a, b ∈ A,∀X ∈ L. (1)

Victor Buchstaber proposed in [2, 3] to study a very important
special case of Lie-Reinhart algebras (A,L) that he called
polynomial Lie algebras. In this case

1)A = ⊕i∈ZAi = R[t1, t2, . . . , tp] is the Z-graded polynomial
algebra over R on p variables t1, . . . , tp;

The work is supported by the Russian Foundation for Basic Research under grant
RFBR-17-01-00671

84



2) the Lie algebra L = ⊕i∈ZLi is Z-graded;
3) L is a free left module of rangN overA = R[t1, t2, . . . , tp]

with the fixed basis L1, . . . , LN , Li ∈ Lni, i = 1, . . . , N ;
4) the gradings are compatible with each other

AiLj ⊂ Li+j, Li(Aj) ⊂ Ai+j, i, j ∈ Z.

Theorem 1 The Lie subalgebra LieR(L1, . . . , LN) ⊂ L generated
by L1, . . . , LN , grows at most polynomially.

The slow growth of LieR(L1, . . . , LN) for some important
examples of polynomial Lie algebras is related to the integrabilty
of the corresponding hyperbolic systems of PDE [3, 4].
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On one–point commuting difference
operators of rank one

Andrey E. Mironov (Sobolev Institute of Mathematics,
Siberian Branch, Russian Academy of Sciences,

Novosibirsk), mironov@math.nsc.ru
Gulnara S. Mauleshova (Sobolev Institute of
Mathematics, Siberian Branch, Russian Academy of
Sciences, Novosibirsk), mauleshova_gs@mail.ru

One-point commuting difference operators of rank 1 are
considered. The coefficients in such operators depend on one
functional parameter, and the degrees of shift operators in
difference operators are positive. These operators are studied
in the case of hyperelliptic spectral curves, where the base
point coincides with a point of branching. Examples of operators
with polynomial and trigonometric coefficients are constructed.
Operators with polynomial coefficients are embedded in
differential operators with polynomial coefficients. This
construction provides a new method for constructing commutative
subalgebras in the first Weyl algebra. A relationship between
one-point commuting difference operators of rank 1 and one-
dimensional finite-gap Schrödinger operators is investigated.
In particular, a discretization of the finite-gap Lamé operators
is obtained.

The work was partially supported by the Russian Science Foundation, project no.
14-11-00441
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Circle actions on 4–manifolds
Oleg R.Musin (UTRGV and IITP RAS),

oleg.musin@utrgv.edu

We consider an equivariant classification of smooth actions
of the circle group S1 on oriented 4–manifolds. The problem
of classification of torus and circle actions on 4-manifolds
was considered in 1970s by Orlik, Raymond, Pao, Fintushel,
Melvin, Parker and Yoshida. In particular, Fintushel proved
that a simply connected S1–manifold must be a connected
sum of copies of S4, ±CP 2, and S2 × S2.

Let S(p, q) denote an S1–rotation on S4 with weights p
and q. Consider an action of S1 on CP 2:

[z0 : z1 : z2]→ [z0 : eiaϕz1 : eibϕz2], a, b ∈ Z, ϕ ∈ [0, 2π].

Denote CP 2 with this action by P (a, b) and−CP 2 byQ(a, b).
Let Rn denote the orbit space of the following free S1

action on S3 × CP 1:

((u, v), [z0 : z1])→ ((eiϕu, eiϕv), [z0 : einϕz1]), |u|2 + |v|2 = 1.

Note that Rn is S2×S2 if n is even and the twisted S2–bundle
over S2 if n is odd.

Denote by Rn(k, `) the following action on Rn:

((u, v), [z0 : z1])→ ((u, eikϕv), [z0 : ei`ϕz1]).

Now we extend Fintushel’s theorem.

Theorem 1 Any simply connected oriented 4–dimensional S1–
manifold can be represented as an equivariant connected sum
of P (a, b), Q(c, d), Rn(k, `), and S(p, q).
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LetM 4 be an oriented manifold with a circle action. Then
F (M,S1) (the fixed point set of the action) consists of isolated
points p1, . . . , pm and 2-dimensional oriented manifolds F1, . . . , Fk.
Denote by wi1, wi2 the S1–representation weights at pi and by
εi its sign. Let nj denote the Euler number of the normal
bundle of Fj in M . Denote these numbers by W .

There are strong relations between numbers in W. The
rigidity of L–genus (signature) implies the following equation:

m∑
i=1

εi
(zwi1 + 1)(zwi2 + 1)

(zwi1 − 1)(zwi2 − 1)
−

k∑
j=1

4znj
(z − 1)2

=

m∑
i=1

εi. (1)

(Here we assume that weightswi1 andwi2 are relatively prime.)
Let us assign to each Fj a set of 2nj unit weights {wjr},

r = 1, . . . , 2nj, wjr = 1. Using L–rigidity and some simple
topology, we can proved that the set of weights {wij} can be
divided into pairs (wij, wk`) such that wij = wk` with i 6= k.
So we have a graph that we call a graph of weights.

We have proved that to every edge e of the graph of weights
GW we can associate a 2-sphere Se in M . We denote by ne
the Euler number of the normal bundle of Se in M . Then∑

e∈E(G)

ne +

k∑
j=1

nj = 3L(M) = p1(M).

Theorem 2 Suppose a graph GW satisfies (1). Then there is
a 4-dimensional S1–manifold with this graph of weights.

Taking this opportunity, I wish to thank V.M. Buchstaber,
I.M. Krichever and S.P. Novikov for introducing me to this
interesting area of topology.
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Diagonal complexes
Gaiane Yu. Panina (SPbGU, POMI),

gaiane-panina@rambler.ru

(The talk is based on a joint work with J. Gordon)
Given an n-gon, the poset of all collections of pairwise

non-crossing diagonals is isomorphic to the face poset of some
convex polytope called associahedron. We replace in this setting
the n-gon (viewed as a disc with n marked points on the
boundary) with an arbitrary oriented surface equipped with
a number of labeled marked points ("vertices"). The surface is
not necessarily closed, and may contain a number of punctures.
With appropriate definitions (in a sense, we mimic the construction
of associahedron) we arrive at cell complexesD and its barycentric
subdivision BD. If the surface is closed, the complexD (as well
as BD) is homotopy equivalent to the space of metric ribbon
graphs RGmet

g,n , or, equivalently, to the decorated moduli space
M̃g,n [2], [1]. For bordered surfaces, we prove the following:

(1) Contraction of a boundary edge does not change the
homotopy type of the complex.

(2) Contraction of a boundary component to a new marked
point yields a forgetful map between two diagonal complexes
which is homotopy equivalent to the Kontsevich’s tautological
circle bundle [3]. Thus, contraction of a boundary component
gives a natural simplicial model for the tautological bundle.
As an application, we compute the first Chern class (also
its powers) in combinatorial terms. The latter result is an
application of the Mnev-Sharygin local combinatorial formula
[4].

The work was partially supported by the Russian Science Foundation under grant
16-11-10039.
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(3) In the same way, contraction of several boundary
components corresponds to Whitney sum of the tautological
bundles.

(4) Eliminating of a puncture gives rise to a bundle which
equals to a surgery on the universal curve. In particular, the
bundle incorporates at a time all the M. Kontsevich’s tautological
S1-bundles.
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Smooth actions of compact Lie
groups on complex projective spaces

Krzysztof M. Pawa lowski (Adam Mickiewicz
University in Poznań), kpa@amu.edu.pl

The goal of the talk is to present constructions of smooth
actions of compact Lie groups G on complex projective spaces
such that the manifold of points fixed under the action of G
on the complex projective space CP n in question –

M = {x ∈ CP n | g · x = x for all g ∈ G}

– is not stably almost complex,

– is stably almost complex but not almost complex,

– is almost complex but not homotopically symplectic,

– is homotopically symplectic but not symplectic,

– is symplectic but not Kähler.

We give examples of manifolds M with specific properties
listed above, and we prove that the manifoldsM can occur as
the fixed point sets of smooth actions of compact Lie groups
on complex projective spaces.

In particular, following arguments in [4], we prove that for
every compact Lie group G, there exists a smooth action of G
on a complex projective space CP n such that the fixed point
set is not a symplectic manifold and therefore, the action of
G on CP n is not symplectic with respect to any symplectic
structure on CP n.



Examples of non-symplectic smooth actions on symplectic
manifolds were obtained for the first time in [2], for actions of
the circle S1 on products CP 1× · · · ×CP 1 and N ×CP 1 for
some 4-dimensional closed symplectic manifold N .

The article [3] presents a description of manifoldsM which
can occur as the fixed point sets of smooth actions of finite
Oliver groups G on complex projective spaces.

The recent work [1] (now in progress) focuses on answering
the question which symplectic manifolds M can occur as the
fixed point sets of symplectic actions of a given compact Lie
group G on specific symplectic manifolds.
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Isoperimetric inequalities for Laplace
eigenvalues on the sphere and the real

projective plane

Alexei V. Penskoi (Moscow State University, National
Research University - Higher School of Economics,
Independent University of Moscow, Interdisciplinary
Scientific Center J.-V. Poncelet), penskoi@mccme.ru

This talk contains two recent results concerning isoperimetric
inequalities on the sphere and the real projective plain.

The first result (joint work with Nadirashvili) is an
isoperimetric inequality for the second non-zero eigenvalue of
the Laplace-Beltrami operator on the real projective plane.
For a metric of unit area this eigenvalue is not greater than 20π.
This value is attained in the limit by a sequence of metrics
of area one on the projective plane. The limiting metric is
singular and could be realized as a union of the projective
plane and the sphere touching at a point, with standard metrics
and the ratio of the areas 3 : 2.

The second result (joint work with Karpukhin, Nadirashvili
and I. Polterovich) is an isoperimetric inequality for all
eigenvalues of the Laplace-Beltrami operator on the sphere.
It is shown that for any positive integer k, the k-th nonzero
eigenvalue of the Laplace-Beltrami operator on the
two-dimensional sphere endowed with a Riemannian metric of
unit area, is maximized in the limit by a sequence of metrics
converging to a union of k touching identical round spheres.
This proves a conjecture posed by Nadirashvili in 2002 and
yields a sharp isoperimetric inequality for all nonzero eigenvalues
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of the Laplacian on a sphere. Earlier, the result was known
only for k = 1 (J. Hersch, 1970), k = 2 (N. Nadirashvili, 2002;
R. Petrides, 2014) and k = 3 (N. Nadirashvili and Y. Sire,
2017). In particular, it is proven that for any k > 2, the
supremum of the k-th nonzero eigenvalue on a sphere of unit
area is not attained in the class of Riemannian metrics which
are smooth outsitde a finite set of conical singularities.
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Path integrals on real, p-adic, and
adelic spaces

Zoran Rakić (Faculty of Mathematics, Belgrade, Serbia),
zrakic@matf.bg.ac.rs

We study path integrals in ordinary, p-adic and adelic quantum
mechanics for systems determined by quadratic Lagrangians.
The corresponding probability amplitudes K(x

′′
, t
′′
;x′, t′) for

two-dimensional systems with quadratic Lagrangians are found.
The obtained expressions are generalized to any finite-dimensio-
nal spaces. These exact general formulas are presented in the
form which is invariant under interchange of the number fields
R ←→ Qp and Qp ←→ Qp′ , p 6= p′. This invariance shows
the fundamental rôle of adelic path integral in mathematical
physics of quantum phenomena.

This is joint work with Branko Dragović.

The work was partially supported by the project ON174012 of MPNTR of
Republic of Serbia.
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Towards integrability structure in 3D
Ising model

Dmitry V. Talalaev (MSU), dtalalaev@yandex.ru

The Ising model is an amazing area of interaction between
algebraic and geometric methods, topology and exactly solved
models in statistical physics, describing among others critical
phenomena.

The integrability of the 3D system is still hypothetical. In
the talk we develop an algebraic interpretation [1] based on
the Zamolodchikov tetrahedron equation.

The main part of the work is related to the combinatorics
of the n-simplicial complex [2]. We first construct some recursion
procedure on the spaces of solutions for the n-simplex equation.
Then we propose such a weight matrix in 3D Ising model
which satisfies an analog of the tetrahedron equation with
spectral parameter. Our analog does not provide the same
simple integrability property as the original one. The principal
goal of this talk is to draw attention of the experts community
to this phenomenon.
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Toric topology of the complex
Grassmann manifolds and

(2n, k)-manifolds

Victor M. Buchstaber (Steklov Mathematical Institute),
buchstab@mi.ras.ru

Svjetlana Terzić (University of Montenegro),
sterzic@ac.me

The family of the complex Grassmann manifoldsGn,k with the
canonical action of the algebraic torus (C∗)n and, consequently,
the compact torus T n = Tn is well known. The interest in
description of these actions is motivated by the classical and
modern problems of algebraic geometry, algebraic and equivariant
topology, symplectic geometry and enumerative combinatorics.
In the well known papers of Gel’fand-Serganova, Goresky-
MacPherson, Kapranov etc, it is studied the (C∗)n-equivariant
topology of Gn,k. In this context, there is the analogous of the
moment map µ : Gn,k → ∆n,k for the hypersimplex ∆n,k. In
the case k = 1 we have the complex projective space CP n−1 ,
which is the fundamental example of a toric manifold and ∆n,1

is a simplex. For k ≥ 2, k 6= n − 1 the combinatorics of ∆n,k

does not determine the structure of the orbit space Gn,k/T
n

any more.
We study the action of the compact torus T n on Gn,k

by developing the methods of the toric geometry and the
toric topology and propose the method for the description
of the orbit space Gn,k/T

n. In the talk it will be presented
our approach and the results related to this problem. The
first non-trivial example is the orbit space G4,2/T

4, which is
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the space of complexity 1. We earlier proved that G4,2/T
4

is homeomorphic to ∂∆4,2 ∗ CP 1 and the proof contains the
foundations of our approach. The space G5,2/T

5, which is
the non-trivial example of the space of complexity 2, is much
more complicated. In this case we demonstrate our methods in
more details and prove thatG5,2/T

5 is homotopy equivalent to
∂∆5,2 ∗CP 2. Our methods allow to describe the orbits spaces
of the other compact homogeneous spaces of positive Euler
characteristic as well. We demonstrate it, in particular, for
the flag manifold F3 and prove that F3/T

3 is homeomorphic
to S4.

The methods and the results, which aim to be discussed,
represent the fundaments for our theory of (2l, q)-manifolds.
This theory is concerned withM 2l-manifolds with an effective
action of the torus T q, q ≤ l which have the finite number of
isolated fixed points, and an analogous of the moment map
µ : M 2l → P q, where P q is a q-dimensional convex polytope.
The theory is axiomatized by the data which generalize the
structural results in the case of complex Grassmann manifolds
and they allow to describe the equivariant topology ofM 2n as
well as the orbit stace M 2n/T k.
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The homotopy theory of polyhedral
products associated with flag

complexes
Stephen Theriault (University of Southampton),

s.d.theriault@soton.ac.uk

This is joint work with Taras Panov.
Polyhedral products have received considerable attention

recently as they unify diverse constructions from several seemingly
separate areas of mathematics: toric topology (moment-angle
complexes), combinatorics (complements of complex coordinate
subspace arrangements), commutative algebra (the Golod
property of monomial rings), complex geometry (intersections
of quadrics), and geometric group theory (Bestvina-Brady groups).
In this talk we investigate the homotopy theory of polyhedral
products associated to flag complexes.

Let K be a simplicial complex on the vertex set [m] =
{1, 2, . . . ,m}. For 1 ≤ i ≤ m, let (Xi, Ai) be a pair of pointed
CW -complexes, where Ai is a pointed subspace of Xi. Let
(X,A) = {(Xi, Ai)}mi=1 be the sequence of pairs. For each
simplex σ ∈ K, let (X,A)σ be the subspace of

∏m
i=1Xi defined

by

(X,A)σ =

m∏
i=1

Yi where Yi =

{
Xi if i ∈ σ
Ai if i /∈ σ.

The polyhedral product determined by (X,A) and K is

(X,A)K =
⋃
σ∈K

(X,A)σ ⊆
m∏
i=1

Xi.
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A simplicial complex K is flag if any set of vertices of K
which are pairwise connected by edges spans a simplex.

The flagification of K, denoted Kf , is the minimal flag
complex on the same set [m] that contains K. We therefore
have a simplicial inclusion K → Kf . We prove the following.

Theorem 1 LetK be a simplicial complex on the vertex set [m],
let Kf be the flagification of K, and let L be the simplicial
complex given bym disjoint points. Let (X,A)L

g−→ (X,A)K
f−→

(X,A)K
f be the maps of polyhedral products induced by the

maps of simplicial complexes L −→ K −→ Kf . Then the
following hold:

(a) the map Ωf has a right homotopy inverse;

(b) the composite Ωf ◦ Ωg has a right homotopy inverse.

In particular, consider the special case when each Ai is
a point. Write (X, ∗) for (X,A) and notice that (X, ∗)L =
X1 ∨ · · · ∨ Xm. If K is a flag complex on the vertex set [m]
then the simplicial map L −→ K induces a map

f : X1 ∨ · · · ∨Xm = (X, ∗)L −→ (X, ∗)K.

By Theorem 1, Ωf has a right homotopy inverse. That is,
Ω(X, ∗)K is a retract of Ω(X1∨· · ·∨Xm). This informs greatly
on the homotopy theory of Ω(X, ∗)K since the homotopy type
of Ω(X1∨· · ·∨Xm) has been well studied; in particular, when
each Xi is a suspension the Hilton-Milnor Theorem gives an
explicit homotopy decomposition of the loops on the wedge.
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Orbits in real loci of spherical
homogeneous spaces

Dmitry A. Timashev (Lomonosov Moscow State
University), timashev@mccme.ru

The talk is based on a joint work in progress with S. Cupit-
Foutou.

As everyone knows, all non-degenerate quadratic forms in
n variables are equivalent over C, whereas over R they are
distributed among n + 1 equivalence classes, by the inertia
law. This classical result is a particular case of a general
phenomenon: given a homogeneous variety X for a complex
algebraic group G defined over real numbers, the group of
complex points G(C) acts on X(C) transitively, while the real
Lie group G(R) may have several (finitely many) orbits in the
real locus X(R). The problem is to classify these real orbits.

We address this problem for a particular class of homogeneous
varieties, namely spherical homogeneous spaces. Here G is a
connected reductive group. Sphericality means that a Borel
subgroup B ⊂ G acts on X with a dense open orbit. Spherical
spaces compose a nice and important class of homogeneous
varieties including symmetric spaces, flag varieties, etc. In our
talk, we concentrate on two cases: (A)X is a symmetric space;
(B) G is split over R. Note that the space X = GLn/On of
quadratic forms belongs to both cases.

Our approach to solving the problem in case (A) is an
algebraic one based on Galois cohomology. It is quite standard
that the set of G(R)-orbits in X(R) is in a bijection with the
kernel of the natural Galois cohomology map H1(R, H) →

The work was partially supported by the SFB TRR 191 Project C3 at the
University of Bochum and by the RFBR grant 16-01-00818.
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H1(R, G), where H ⊂ G is the stabilizer of a base point
x0 ∈ X(R). For a symmetric subgroup H, this kernel can
be effectively computed.

In case (B), our approach is more geometric. We observe
that the open Borel orbit Bx0 ⊂ X intersects each G(R)-orbit
in X(R) and the intersection is a union of finitely many open
B(R)-orbits in X(R). The open B(R)-orbits in the real locus
of Bx0 are easy to describe: they are in a bijection with the
T (R)-orbits in Z(R), where T ⊂ B is a split maximal torus
and Z = Tx0 ⊂ Bx0 is a so-called Brion–Luna–Vust slice. To
understand which of these orbits glue together, we introduce
an action of the Weyl group W on the set of B(R)-orbits
compatible with the W -action on the set of ambient B-orbits
defined by F. Knop. This construction involves the actions
of minimal parabolic subgroups Pα ⊃ B and the symplectic
geometry of the cotangent bundle T ∗X .

The stabilizer of Bx0 under this W -action is a semidirect
product WX n WL, where the first factor is a certain
crystallographic reflection group (the little Weyl group of X)
and the second factor is a parabolic subgroup in W acting
trivially on the set of open B(R)-orbits. We now come to our
main result.

Theorem 1 The orbit set X(R)/G(R) is in a bijection with
the set of WX-orbits on Z(R)/T (R).

The latter set and theWX-action can be described combinatorially.
A similar theorem holds in case (A) (with a bit different

meaning of WX and Z). This gives us a hope that Theorem 1
can be extended to arbitrary spherical homogeneous spaces
defined over real numbers.
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An elementary approach to Somos-4
sequences

Alexey V.Ustinov (Pacific National University,
Institute of Applied Mathematics (Khabarovsk Division,

Far-Eastern Branch of the Russian Academy of Sciences)),
ustinov@iam.khv.ru

A sequence Somos-4 is defined by initial data s0, s1, s2, s3

and fourth-order recurrence

sn+2sn−2 = αsn+1sn−1 + βs2
n.

Usually properties of this sequence are studied by means
of elliptic functions. The talk will be devoted to the new
elementary approach to Somos-4 sequences. Hopefully it will
be suitable for higher-rank Somos sequences corresponding to
curves of higher genus.
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On face numbers of flag simplicial
complexes

Yury M.Ustinovskiy (Princeton University),
yuraust@gmail.com

Let K be an n-dimensional simplicial complex. Denote by fi
the number of i-dimensional simplices of K. Characterization
of possible f -vectors (f0, . . . , fn) of various classes of simplicial
complexes is a classical problem of enumerative combinatorics.

Among the most well-known results in this direction are:
(1) the Kruskal-Katona theorem describing all possible f -
vectors of general simplicial complexes; (2) Analogue of the
Kruskal-Katona theorem for Cohen-Macaulay simplicial complexes;
(3) The upper bound theorem due to McMullen, which gives
necessary conditions for a tuple of integers to be the f -vector
of a triangulation of an n-dimensional sphere; (4) g-Theorem,
characterizing the f -vectors of simplicial polytopes.

The proofs of these results led to numerous constructions,
associating certain algebraic and topological objects to
combinatorial objects (simplicial complexes, triangulations of
spheres, polytopes, etc). These constructions allow to employ
methods of homological algebra, algebraic geometry and algebraic
topology in purely combinatorial problems.

Following a similar path, we derive a series of inequalities
on the f -vectors of flag simplicial complexes. Our talk is built
upon the results of Denham, Suciu [1] and Panov, Ray [2],
where the authors relate the Poincaré series of a face ring of a
flag simplicial complex to the Poincaré series of a free graded
algebra. The main result can be formulated as follows.
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Theorem 1 ([3, Thm. 1.1]) Let K be a flag simplicial complex
with f -vector (f0, . . . , fn). Then for any N ≥ 1 we have

(−1)N
∑
d|N

µ(N/d)(−1)dpd(α) ≥ 0, (1)

where pd is d-th Newton polynomial expressed in elementary
symmetric polynomials α = (α1, α2, . . . ) with

αn :=

n−1∑
i=0

fi

(
n− 1

i

)
,

µ(n) is the Möbius function

µ(n) =

{
(−1)k, if n is a product of k distinct prime factors;
0, otherwise,

and the summation is taken over all positive divisors of N .
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Twisted Homology and Twisted
Simplicial Groups

Vladimir V. Vershinin (Université de Montpellier,
France; Sobolev Institute of mathematics, Novosibirsk,
Russia), vladimir.vershinin@umontpellier.fr

We investigate simplicial complexes with twisted structure
on vertices and small categories with twisted structure on
objects. Then we introduce a twisted construction of simplicial
groups for such simplicial complexes and small categories by
varying faces and degeneracies from twisted data in the free
product construction of simplicial groups, which gives a new
construction of simplicial groups. The homotopy type of the
resulting twisted simplicial groups is different from the untwisted
case because of variation on faces and degeneracies. The main
result determines the homotopy type of the twisted simplicial
groups.

This is a joint work with Jingyan Li and Jie Wu.
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On Zeros of Yamada Polynomial for
Spatial Graphs

Andrei Yu.Vesnin (Novosibirsk State University and
Tomsk State University), vesnin@math.nsc.ru

Polynomial invariants of knots, links, and spatial graphs
are studied from various points of views. One of interesting
problems is to describe the distribution of zeros of the polynomial
invariant.

The mostly investigated case is the Jones polynomial for
a knot. The roots of the Jones polynomial for all prime knots
with at most ten crossings were computed numerically in [1],
that lead to interesting observations. In [2] was shown that
zeros of Jones polynomials of (pretzel) links are dense in the
whole complex plane.

In [3] S. Yamada introduced a polynomial invariant for
spatial graphs which is known now as Yamada polynomial.
The behaviour of Yamada polynomial under replacing of an
edge by a sub-diagram of a link was described in [4] for some
classes of graph. Using the exact formulae of Yamada polynomial
for some classes of spatial graphs we get the following result.

Theorem 1 [4] Zeros of the Yamada polynomial for spatial
graphs are dense in the following region:

Ω =
{
z ∈ C : |z + 1 + z−1| ≥

min{1, |z3 + 2z2 + z + 1|, |1 + z−1 + 2z−2 + z−3|}
}
.

The work was partially supported by Laboratory of Topology and Dynamics of
NSU (grant no. 14.Y26.31.0025 of the government of the Russian Federation) and a
grant RFBR-16-01-00414.
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We will also discuss the extension of the method from [4]
which leads to the proof of density of Yamada polynomial for
spatial graphs in the whole complex plane.
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Microformal geometry and homotopy
algebras

Theodore Th. Voronov (School of Mathematics,
University of Manchester,

Department of Quantum Field Theory, Tomsk State
University), theodore.voronov@manchester.ac.uk

I will speak about the notion of a “thick morphism”, which
generalizes ordinary smooth maps. Like ordinary maps, a thick
morphism induces an action on functions (pullback), but unlike
the familiar case, such pullbacks are, in general, non-linear
transformations. They have the form of formal non-linear
differential operators and are constructed by some perturbative
procedure. (Thick morphisms themselves are defined as formal
canonical relations between the cotangent bundles specified
by generating functions of particular type.) Being non-linear,
these pullbacks cannot be algebra homomorphisms; however,
their derivatives at each point turn out to be homomorphisms.

The non-linearity is a feature essential for application to
homotopy bracket structures on manifolds. Roughly, “non-
linearity” = “homotopy”. A thick morphism intertwining odd
master Hamiltonians of two S∞-structures (which is practically
described by a Hamilton-Jacobi type equation for the generating
function) induces an L∞-morphism of the corresponding
homotopy Poisson algebras. Application to homotopy Poisson
structures was our primary motivation; but there are also
applications to vector bundles and Lie algebroids.

There are two parallel versions: “bosonic” (for even functions)
and “fermionic” (for odd functions). The bosonic version has
a quantum counterpart. “Quantum pullbacks” have the form of
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particular Fourier integral operators. There is also an application
to “quantum brackets” induced by BV-type operators.

References

[1] Th. Th. Voronov, “Nonlinear pullbacks"of functions and
L∞-morphisms for homotopy Poisson structures, Geom.
Phys., 111 (2017), 94–110.

[2] Th. Th. Voronov, Thick morphisms of supermanifolds and
oscillatory integral operators, Russian Math. Surveys, 71:
4 (2016), 784–786.

[3] Th. Th. Voronov, Quantum microformal morphisms of
supermanifolds: an explicit formula and further properties,
arXiv:1512.04163.

[4] Th. Th. Voronov, Microformal geometry and homotopy
algebras, arXiv:1411.6720.

[5] Th. Th. Voronov, Tangent functor on microformal
morphisms, arXiv:1710.04335.

111



Converse of Smith Theory

Min Yan (Hong Kong University of Science and
Technology), mamyan@ust.hk

In 1942, P. A. Smith [3] showed that the fixed point of
a p-group action on a finite Zp-acyclic complex is still Zp-
acyclic. In 1971, Lowell Jones studied the converse problem
and showed that any Zp-acyclic finite CW-complex is the fixed
point of a Zp-action on a finite contractible CW-complex. In
1974, Robert Oliver [2] extended Jones’ work to the problem
that, for a given finite group G and a finite CW-complex F ,
whether F is the fixed point of a (semi-free or general) action
of G on a finite contractible CW -complex.

We study the following problem. Suppose G is a finite
group, and f : F → Y is a map between finite CW -complexes.
Is it possible to extend F to a finiteG-CW complexX satisfying
XG = F , and extend f to a G-map g : X → Y (G acts
trivially on Y ), such that g is a homotopy equivalence after
forgetting the G-action? The work of Jones and Oliver can be
regarded as the special case that Y is a point.

In case of general G-action, we find that Oliver’s theory
largely remains true. In case of semi-freeG-action, the problem
has an obstruction in K0, and we calculate some examples.

This is a joint work with Sylvain Cappell of New York
University, and Shmuel Weinbeger of University of Chicago.

The work was supported by Hong Kong RGC General Research Fund 16303515
and 16319116.
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International Seminar on
Toric Topology and
Homotopy Theory

Iterated higher Whitehead products
in topology of moment-angle

complexes
Semyon A.Abramyan (Faculty of Mathematics,

National Research University Higher School of Economics,
Moscow), semyon.abramyan@gmail.com

The moment-angle complex ZK is a cell complex built of
produts of polydiscs and tori parametrised by simplices in
a finite simplicial complex K. The moment-angle complex is
a special case of polyhedral products that are interesting in
themselves. Polyhedral products provide a wonderful basis for
applying the unstable homotopy theory methods.

In this talk we will study the topological structure of moment-
angle complexes ZK from the point of view of iterated higher
Whitehead products. Higher Whitehead products in the homotopy
groups of moment-angle complexes and polyhedral products
were first studied by T. Panov and N. Ray in [6]. They obtained
structural results and proposed several problems, some of which
will be discussed in the talk. Further important results on the
structure of higher Whitehead products for special classes of

The work was partially supported by Simons Foundation, Moebius Contest
Stipend for young scientists and Russian Foundation for Basic Research, grant no. 18-
51-50005.
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simplicial complexes were obtained in the works of Grbic and
Therialut [4], Iriye and Kishimoto [5].

Consider two classes of simplicial complexes. The first class
B∆ consists of simplicial complexesK for whichZK is homotopy
equivalent to a wedge spheres. The second class W∆ consists
of K ∈ B∆ such that all spheres in the wedge are realized by
iterated higher Whitehead products. Buchstaber and Panov
asked in [2, Problem 8.4.5] if it is true that B∆ = W∆.

In this talk we will show that this is not the case.

Theorem 1 Let K be the simplicial complex (∂∆2 ∗ ∂∆2) ∪
∆2∪∆2. The moment-angle complex ZK is homotopy equivalent
to a wedge of spheres (S7)∨6 ∨ (S8)∨6 ∨ (S9)∨2 ∨ S10, but the
sphere S10 ⊂ ZK cannot be realized by a linear combination
of iterated higher Whitehead products.

On the other hand, we show that the class W∆ is large
enough.

Theorem 2 Let K ∈ W∆. Then the simplicial complex Jn(K) =
(∂∆n ∗ K) ∪∆n also belongs to W∆.

Theorem 3 If K1,K2 ∈ W∆ then K = K1 ∪I K2 ∈ W∆ for
any common face I.

Then using these operations we prove that there exists
a simplicial complex that realizes any given iterated higher
Whitehead product. Also, we describe the smallest simplicial
complex that realizes the given product.

115



References

[1] S. Abramyan, Iterated Higher Whitehead
products in topology of moment-angle complexes,
arXiv:1708.01694.

[2] V. Buchstaber,T. Panov, Toric Topology, Math.
Surv. and Monogr., 204, Amer. Math. Soc.,
Providence, RI, 2015.
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Toric topology of balanced simplicial
complex

Djordje Baralić (Mathematical Institute SASA),
djbaralic@mi.sanu.ac.rs

Stanley introduced in [4] an important class of simplicial
complexes that arise often in combinatorics, topology and
algebra so called balanced simplicial complexes. A n-dimensional
simplicial complex K is called balanced if its set of vertices
can be splitted into n disjoint subsets such that there is no
two vertices spanning the edge ofK and belonging to the same
subset. One of central questions in combinatorics is description
of all integer vectors that may appear as the face vectors of
convex polytopes. The most celebrated result in this problematic
is the famous g-theorem.

In the paper [2] Klee and Novik conjectured a stronger
bound concerning the face numbers of balanced simplicial
n-polytopes. The conjecture known as the Balanced Lower
Bound Theorem is proved in [1, Theorem 1.3] (“if” part) and
in [2, Theorem 5.8] (“only if” part).

Theorem 1 (Balanced Lower Bound Theorem) Let P be
a balanced simplicial n-polytope. Then

h0(P )(
n
0

) ≤ h1(P )(
n
1

) ≤ · · · ≤ h[n2 ](
n

[n2 ]
). (1)

The equality hi−1(P )

( n
i−1)

= hi(P )

(ni)
for some i ≤ n

2 if and only if P

has the balanced (i− 1)-stacked property.

The work was partially supported by the grant 174020 of the Ministry of
Education and Science of the Republic of Serbia.
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The proof of the Balanced Generalized Lower Bound Theorem
given by Juhnke-Kubitzke and Murai in [1] is based on the
existence of so called linear system of parameters and a Lefschetz
element of the Stanley-Reisner ring of simplicial polytopes.
Corollaries have insightful topological meanings for canonical
quasitoric manifolds which we explain in this contribution.
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The equivariant cohomology and
K-theory of a cohomogeneity-one

action

Jeffrey D. Carlson (University of Toronto),
jcarlson@math.toronto.edu

We compute the Borel equivariant cohomology and equivariant
K-theory of a cohomogeneity-one action of a connected, compact
Lie group on a topological space M , obtaining more explicit
expressions in the event M is a manifold.

TheK-theoretic result requires the principal isotropy groups
be connected with torsion-free fundamental group, but does
not require extension to rational coefficients. Along the way
we are forced to something close to a classification of the
permissible systems of isotropies of such an action. We also
unexpectedly obtain results regarding the Mayer–Vietoris sequence
and cohomology of a mapping torus in an arbitrary multiplicative
equivariant cohomology theory.

The cohomological portion of this work is joint with Oliver
Goertsches, Chen He, and Liviu Mare.

This work was partially supported by the National Center for Theoretical Sciences
(Taipei).

119



Simplicial G-Complexes and
Representation Stability of

Polyhedral Products

Xin Fu (University of Southampton), x.fu@soton.ac.uk

In [2], Church and Farb introduced the theory of
representation stability which generalises the classical homology
stability to situations when each vector space Vm has a Σm-
action. In this talk, we study this notion arising in toric topology.
For a simplicial G-complex K, a polyhedral product (X,A)K

is a G-invariant subspace of a product space. We show that
the stable homotopy decomposition of Σ(X,A)K , due to [1], is
homotopy G-equivariant. Considering a sequence of simplicial
Σm-complexes {Km}, we study the representation stability
of polyhedral products (X,A)Km and state criteria on Σm-
complexes Km which imply the representation stability of
{Hi((X,A)Km)}. This is a joint work with Jelena Grbić.
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On the quasitoric bundles

Sho Hasui (University of Tsukuba),
s.hasui@math.tsukuba.ac.jp

Looking back on the partial classification results of quasitoric
manifolds, we notice that “bundle-type” ones are especially
standing out. For example, in the classification of quasitoric
manifolds with the second Betti number 2 [1], most of them
are fiber bundles whose the base spaces and fibers are complex
projective spaces.

In [2], I introduced a new notion called quasitoric bundle
to give a precise definition of the term “bundle-type quasitoric
manifold.” In the more recent study of them, it is proved
that the classifying space BT of a compact torus T works
as the classifying space of quasitoric bundles in a certain sense.
Moreover, there are some applications of this fact to the
topological classification of bundle-type quasitoric manifolds.
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The cohomology rings of Hessenberg
varieties and Schubert polynomials

Tatsuya Horiguchi (Osaka University),
tatsuya.horiguchi0103@gmail.com

Let n be a positive integer. The (full) flag varietyF`(Cn)
in Cn is the collection of nested linear subspaces V• := (V1 ⊂
V2 ⊂ . . . ⊂ Vn = Cn) where each Vi is an i-dimensional
subspace in Cn. Considering a linear map X : Cn → Cn and
a weakly increasing function h : {1, 2, . . . , n} → {1, 2, . . . , n}
satisfying h(j) ≥ j for j = 1, . . . , n, called a Hessenberg
function, a Hessenberg variety is defined by

Hess(X, h) := {V• ∈ F`(Cn) | XVi ⊆ Vh(i) for i = 1, . . . , n}.
Here we concentrate on Hessenberg varieties Hess(N, h)

when X = N a nilpotent matrix whose Jordan form consists
of exactly one Jordan block. We define a polynomial

fi,j :=

j∑
k=1

( i∏
`=j+1

(xk − x`)
)
xk (1)

for 1 ≤ j ≤ i ≤ n. Here, we take by convention
∏i

`=j+1(xk −
x`) = 1 whenever i = j. From the result of [1], the following
isomorphism as Q-algebras holds

H∗(Hess(N, h);Q) ∼= Q[x1, . . . , xn]/(fh(1),1, fh(2),2, . . . , fh(n),n).

Moreover, there is a surprising connection that this presentation
can be obtained from a hyperplane arrangement ([2]). The
main theorem is as follows.

The work was partially supported by JSPS Grant-in-Aid for JSPS Fellows:
17J04330.
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Theorem 1 ([3]) Let i, j be positive integers with 1 ≤ j <
i ≤ n. Then the polynomial fi−1,j in (1) can be written as an
alternating sum of certain Schubert polynomials S

w
(i,j)
k

:

fi−1,j =

i−j∑
k=1

(−1)k−1S
w
(i,j)
k

(2)

where w(i,j)
k (1 ≤ k ≤ i − j) is a permutation on n letters

{1, 2, . . . , n} defined by (si−ksi−k−1 . . . sj)(si−k+1si−k+2 . . . si−1)
using the transpositions sr of r and r + 1. Here, we take by
convention (si−k+1si−k+2 . . . si−1) = id whenever k = 1.

We can interpret the equality (2) in Theorem 1 from a
geometric viewpoint under the circumstances of having
a codimension one Hessenberg variety Hess(N, h′) in the original
Hessenberg variety Hess(N, h).
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Homotopy types of gauge groups over
high dimensional manifolds

Ruizhi Huang (Academy of Mathematics and Systems
Science, CAS), huangrz@amss.ac.cn

The homotopy types of gauge groups have been investigated
by many experts in the latest twenty years. In particular,
Kishimoto, Kono, Theriault, So and others have studied the
gauge groups over 4-dimensional manifolds. In this talk, we
will use So’s decomposition methods to study the homotopy
theory of gauge groups over higher dimensional manifolds. For
instance, we will study the E-type gauge groups over (n− 1)-
connected 2n-manifolds. We will further investigate other 2n-
manifolds and sphere bundles as well. A particular interesting
case is about a family of 5-dimensional manifolds as the total
spaces of S1-principal bundles overs simply-connected four
manifolds. We will give many homotopy decompositions of
gauge groups under the mentioned cases.
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The Gromov width of generalized
Bott manifolds

Taekgyu Hwang (KAIST), hwangtaekkyu@kaist.ac.kr

The Gromov width is an invariant of the symplectic manifold
measuring the size of the standard ball that can be symplectically
embedded. The moment polytope determines the symplectic
structure on a toric manifold, hence the Gromov width. We
describe an explicit formula for the Gromov width of generalized
Bott manifolds in terms of the defining equations of the moment
polytope. This is based on the joint work with Eunjeong Lee
and Dong Youp Suh.
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Khovanov homology via immersed
curves in the 4-punctured sphere
Artem V.Kotelskiy (Princeton University),

artofkot@gmail.com

Khovanov homologyKhi,j(K) is a bi-graded F2-vector space,
which is a combinatorially defined invariant of a knot. The key
properties and applications of Khi,j(K) are the following:

1. Graded Euler characteristic of Khovanov homology is the
Jones polynomial of a knot, i.e.

1
(t1/2+t−1/2)

∑
i,j(−1)i+j+1tj/2dimF2(Kh

i,j(K)) = JK(t).

2. Khovanov homology was used in the first combinatorial
proof of Milnor conjecture, which states that the unknotting
number of the (p, q)-torus knot is equal to (p−1)(q−1)

2 .

3. Khovanov homology detects the unknot, whereas whether
or not the Jones polynomial detects the unknot is an old
open question.

Suppose we have a decomposition of a knot into two 4-
ended tangles along a 2-sphere: (S3, K) = (D3, Q) ∪(S2,4pts)

(D3, T ), whereQ is a trivial tangle. We will describe a geometric
interpretation of dimF2(Kh

i,j(K)) as a minimal number of
intersections of two immersed curves L(Q), L(T ) in the 4-
punctured sphere. For 2-bridge knots we will show that the
curves are natural in the sense that they are SU(2) traceless
representation varieties of rational tangles. Our work is aimed
towards understanding of what geometric and topological
information Khi,j(K) contains.
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Toric manifolds over an n-cube with
one vertex cut

Hideya Kuwata (Kindai University Technical College),
hideya0813@gmail.com

Toric manifolds (= compact smooth toric varieties) over an
n-cube are known as Bott manifolds (or Bott towers) and their
topology is well studied. The blow up of Bott manifolds at a
fixed point provides toric manifolds over an n-cube with one
vertex and they are all projective since so are Bott manifolds.
On the other hand, Oda’s 3-fold, which is known as the simplest
non-projective toric manifold, is over a 3-cube with one vertex
cut. In this talk, we classify toric manifolds over an n-cube
with one vertex cut as varieties and also as smooth manifolds.
It turns out that there are many non-projective toric manifolds
over an n-cube with one vertex cut (we can even count them
in each dimension) but surprisingly they are all diffeomorphic.

If time permits, I will talk about toric manifolds over a
product of simplices with a face cut, which is a generalization
of an n-cube with one vertex cut. This work is ongoing.

This is joint work with Sho Hasui, Mikiya Masuda and
Seonjeong Park.
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On the new families of flag
nestohedra arising in toric topology

Ivan Yu. Limonchenko (Fudan University),
ilimonchenko@fudan.edu.cn

Victor M. Buchstaber (Steklov Mathematical Institute),
buchstab@mi.ras.ru

It is well known that polyhedral products provide us with
examples of manifolds and cellular spaces with highly nontrivial
topological structure, see [2]. In particular, it was shown in [3]
that for any n ≥ 2 there exists a 2-truncated cube Qn such
that a Massey product of order n is defined and nontrivial in
H∗(ZQ).

In this talk we introduce a family of flag nestohedra P ,
one for each dimension n ≥ 2, that has the same property and
show that there exists a family F of moment-angle-manifolds
over flag nestohedra, such that for any set {n1, . . . , nr} with
r ≥ 1 and ni ≥ 2 for 1 ≤ i ≤ r there is a manifold M ∈ F
with the property that H∗(M) has a strictly defined (i.e., it
contains a unique element) nontrivial Massey product of order
ni for 1 ≤ i ≤ r.

An operator d which maps a convex polytope to the disjoint
union of its facets was introduced in [1]. Simple polytopes are
characterized by the following formula which holds only for
them:

F (dP ) =
∂

∂t
F (P ),

where F (P ) = αn + fn−1α
n−1t + . . . + f0t

n. Here n = dimP
and fk denotes the number of k-dimensional faces. Operator

The work was partially supported by the General Financial Grant from the China
Postdoctoral Science Foundation, grant no. 2016M601486
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d allows us to get differential equations for generating series
of families of polytopes.

Using the theory of the differential ring of simple polytopes
developed in [1], we obtain the value of the boundary operator
d on the family P . It turns out that d is determined by
four families of flag nestohedra: P itself, permutohedra Pe,
stellahedra St, and graph-associahedra PΓ, where Γn consists
of a complete graph on [n] = {1, . . . , n} vertices and the
vertices {n} and {n + 1} are linked by an edge.

Finally, we introduce an operation of duplication on building
sets and determine generating series and the corresponding
systems of differential equations for the result of this operation
when taken on the flag nestohedra families above.
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Massey products in toric topology

Abigail Linton (University of Southampton),
ahml1n14@soton.ac.uk

Massey products are higher cohomology operations that
are often important to the study of formality of spaces, among
many other applications. Moment-angle complexes, one of the
main notable objects of study in toric topology, have a natural
underlying combinatorial structure and it is this structure
that allows us to study combinatorial obstructions to Massey
products in the cohomology of the moment-angle complex.
This talk will present frameworks of combinatorial operations
on simplicial complexes that create non-trivial Massey products
on classes of any given degree.
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Homotopy decompositions
of gauge groups

Ingrid Membrillo-Solis (University of Southampton,
UK), i.membrillo-solis@soton.ac.uk

Let X be a path-connected pointed topological space and
G be a topological group. Given a principal G-bundle
P → X , the group of bundle automorphisms covering the
identity on X is called the gauge group of P → X . Endowed
with the compact-open topology, the gauge group of P → X is
homotopy equivalent to the loop space of the path component
of Map(X,BG) containing the map that classifies the bundle
[1]. Although the set of isomorphism classes of principal G-
bundles over a finite CW -complex X might be infinite, there
exist only finitely many distinct homotopy types among the
gauge groups [2]. One approach to the homotopy classification
problem of gauge groups is to obtain decompositions of the
gauge groups or their loop spaces. In this talk I will present
some results on homotopy decompositions of gauge groups
when G is a compact connected simple Lie group.
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Projective toric manifolds and wedge
operation

Jiyeon Moon (Ajou University), j9746@ajou.ac.kr

The wedge operation is a classical operation defined on the
set of simplicial complexes. When we know all toric manifolds
over a simplicial complex K, there is a way to find all toric
manifolds over simplicial complexesK(J) obtained by a sequence
of wedges from K, for all positive integer tuple J . It was
introduced in [1] and [2].

In this talk, we are interested in the simplicial complex
C(J), where C is the face complex of the dual of 3-cube with
one vertex cut. We completely classify toric manifolds over
C(J) by using the classification of toric manifolds over C due
to [3].

We note that C supports the simplest non projective toric
manifold known as Oda’s example. We also show that, for each
J , there is only one non-projective toric manifold over C(J).
This talk is jointly with Suyoung Choi and Hanchul Park.
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Betti numbers of real toric manifolds
arising from a graph

Seonjeong Park (Sungkyunkwan University),
seonjeong1124@gmail.com

For a graph G, a graph cubeahedron �G and a graph
associahedron 4G are simple convex polytopes which admit
projective smooth toric varieties. In this talk, we introduce
a graph invariant, called the b-number, which computes the
Betti numbers of the real toric manifold corresponding to a
graph cubeahedron. The b-number is a counterpart of the
notion of a-number, introduced by S. Choi and H. Park, which
computes the Betti numbers of the real toric manifold
corresponding to a graph associahedron, see [1]. We also show
that for a forest G and its line graph L(G), the real toric
manifoldXR(4G) over4G and the real toric manifoldXR(�L(G))
over �L(G) have the same Betti numbers. This talk is based
on a joint work with B. Park and H. Park.
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Homotopical approach to group
extensions and homology of

morphisms

Fedor Yu. Pavutnitskiy (National University of
Singapore), fedor@u.nus.edu

In this talk we will review the well known result on classification
of group extensions with abelian kernels by (equivalence classes
of) 2-cocycles from point of view of homotopy theory of simplicial
groups. This approach will allow us to extend the classical
theory to homology and cohomology of group homomorphisms
and obtain analogues of the above-mentioned classification
theorem, together with some facts about universal extensions.
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On the numbers of fullerenes
Alexey D.Rukhovich (Moscow State University),

alex-ruhovich@mail.ru

A mathematical fullerene is a 3-dimensional simple convex
polyhedron where all faces are pentagons and hexagons. The
topic of the work deals with the asymptotics of the number
Φ(n) of fullerenes with less than n hexagons up to combinatorial
equivalence.

The dual graph of the fullerene has all its faces triangle
and vertices of degree 5 or 6. The Euler formula implies that
there are exactly 12 vertices of degree 5. Let us take a set of
unit equilateral triangles in one-to-one correspondence with
faces of the dual graph and glue some pairs of triangles in
the correspondence with edges of the graph. We obtain some
metric space equivalent to a sphere with a flat metric with 12
cone singularities of angle defect π

3 . This construction gives us
a map from the set of fullerenes to the space of flat metrics
with cone singularities.

W.P. Thurston ([1]) proved that for every α1, . . . , αn ∈
(0, 2π) such that α1 + · · ·+αn = 4π the moduli space Cα1,...,αn
of flat metrics with cone singularities of defects α1, . . . , αn
is a manifold of dimension 2(n − 3) with a natural complex
hyperbolic metric.

It is shown that the asymptotics of the number of fullerenes
is Φ(k) ∼ ck10. The result of P. Engel and P. Smillie [2] claims
that the weighted sum of oriented triangulations of a sphere
with 2k triangles and vertices of degree less or equal than 6

The work was partially supported by a grant of the President of the Russian
Federation (grant MD-2907.2017.1) and by the Russian Foundation for Basic Research
(grant 18-51-5 0005).
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is exactly 809
215·313·52

∑
d|k
d9. The trivial consequence is that the

constant in the asymptotics is c = 809π10

217·318·54·7·11
.

We present another proof of the formula

Φ(k) =
809π10

217 · 318 · 54 · 7 · 11
k10 + O(k9).

The approach is based on the representation of fullerenes as
points in moduli space of flat metrics with cone singularities
and the result of C.T. McMullen [3] counting the volume of
this moduli space. Our approach gives also the asymptotics
Φ̂k = 809

√
3π9

214·318·53·7k
9 +O(k8) of the number of fullerenes with two

adjacent pentagons.
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Equivariant K-theory of toric
orbifolds

Soumen Sarkar (Department of Mathematics, Indian
Institute of Technology Madras, India), soumen@iitm.ac.in

Toric orbifolds are topological generalization of projrctive
toric varieties. We introduce some sufficient conditions on the
combinatorial data associated to a toric orbifold to ensure an
invariant CW-structure of the toric orbifold. In this talk I will
discuss 3 different equivariant cohomology theories of toric
orbifolds. This is a joint work with V.Uma.
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On the coinvariant rings of
pseudo-reflection groups
Takashi Sato (Osaka City University),

t-sato@sci.osaka-cu.ac.jp

Let G be a compact connected Lie group, T a maximal
torus of G, andW the Weyl group of G. Then the cohomology
ring (withR-coefficients) of the flag manifoldG/T is isomorphic
to the coinvariant ring of W , that is, H∗(BT )/(H>0(BT )W ).

Kyoji Saito ([1], see also [2] and [3]) gave an alternative
way to obtain the coinvariant ring. Let S denote H∗(BT ) (∼=
Sym(Lie(T )∗)) and Der(S) denote theR-module of all derivations
of S (i.e. linear maps θ : S → S satisfying the Leibniz’s rule.)
Recall that W acts on Lie(T ) as an orthogonal reflection
group, and thenW determines a central hyperplane arrangement
AW in Lie(T ) as the set of the kernels of reflections. Let αH
denote the (positive) root whose kernel is H. The logarithmic
derivation module D(AW ) is defined as follows:

D(AW ) = {θ ∈ Der(S) | θ(αH) ∈ αHS,∀H ∈ AW}.
Saito proved that the image of D(AW ) through the natural
map Der(S) → S coincides with the ideal of S generated by
W -invariant elements of positive degrees.

When we consider unitary reflection groupsW on a vector
space V over C, we also obtain a hyperplane arrangementAW .
The most natural definition of a module D′(AW ) analogous
to the logarithmic derivation modules for Weyl groups seems
to be as follows:
D′(AW ) = {θ ∈ Der(S) | θ(αH) ∈ αrH−1

H S,∀H ∈ AW},
The work was partially supported by JSPS Grant-in-Aid for JSPS Fellows

17J05762.
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where αH is a fixed linear form on V whose kernel is H and
rH is the order of the stabilizer of H. Even though researchers
of hyperplane arrangements employ this definition, the image
of D′(AW ) does not coincide with the coinvariant ring of W .

I will give a “correct” definition of D′(AW ) for a unitary
reflection groupW and prove its image is the ideal of Sym(V ∗)
generated by W -invariant elements of positive degrees.
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Stringy invariants, lattice polytopes,
and combinatorial identities

Karin Schaller (Eberhard Karls Universität Tübingen),
karin.schaller@uni-tuebingen.de

We give a combinatorial interpretation of the stringy Lib-
gober-Wood identity in terms of generalized stringy Hodge
numbers and intersection products of stringy Chern classes
for arbitrary projective Q-Gorenstein toric varieties.

As a first application we derive a novel combinatorial identity
relating arbitrary-dimensional reflexive polytopes to the number
24. In an equivalent way, we extend the well-known formula for
reflexive polygons including the number 12 to LDP-polygons
and toric log del Pezzo surfaces, respectively. Our further
application is motivated by computations of stringy invariants
of nondegenerate hypersurfaces in 3-dimensional algebraic tori
whose minimal models are K3-surfaces, giving rise to
a combinatorial identity for the Euler number 24. Using
combinatorial interpretations of the stringy E-function and
the stringy Libgober-Wood identity, we show with purely
combinatorial methods that this identity holds for any 3-di-
mensional convex lattice polytope containing exactly one interior
lattice point. This talk is based on joint work with Victor
Batyrev.
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Obstructions to factorization of
differential operators on the algebra

of densities on the line

Ekaterina S. Shemyakova (University of Toledo,
Toledo, Ohio, USA), ekaterina.shemyakova@utoledo.edu

Algebra of densities was introduced in 2004 by H. Khudaverdian
and Th. Voronov in connection with Batalin-Vilkovisky geometry.
It is a commutative algebra with unit and an invariant scalar
product naturally associated with every manifold (and containing
the algebra of functions). It gives a convenient framework to
consider differential operators acting on densities of different
weights simultaneously. We shall show that factorization of
differential operators acting on densities on the line is different
from what we know for the classical case, where factorizations
always exist and their structure is known due to Frobenius’s
theorem.We explicitly describe the obstruction to factorization
of the generalized Sturm-Liouville operator in terms of a solution
of the corresponding classical Sturm-Liouville equation. See
[1].
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Classification of gauge groups over
4-manifolds

Tseleung So (University of Southampton),
tls1g14@soton.ac.uk

Let M be an orientable, smooth, closed 4-manifold and
letG be a simple, simply-connected, compact Lie group. Given
a principal G-bundle P overM with its second Chern class k,
the associated gauge group Gk(M) is defined to be the group
of G-equivariant automorphisms of P which fix M . Although
there are infinitely many classes of principalG-bundles overM ,
there are only finitely many homotopy types of gauge groups
over M . Over the last twenty years, topologists have been
studying the homotopy types of gauge groups over 4-manifolds
for many cases, especially whenM is a simply-connected spin
4-manifold. In this seminar I will talk about the classification
of gauge groups over simply-connected 4-manifolds and introduce
my work on the cases whereM is a simply-connected non-spin
4-manifold or a non-simply-connected 4-manifold.
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Totally normally split quasitoric
manifolds

Grigory D. Solomadin (Moscow State University),
grigory.solomadin@gmail.com

A closed stably complex manifold M is called a totally
normally split, or TNS-manifold for short, if its stably normal
vector bundle NM → M is stably isomorphic to a Whitney
sum of some complex linear vector bundles. (Only topological
locally trivial vector bundles will be discussed here.)

Theorem 1 ([1]) LetM 4 be a stably complex simply connected
closed 4-manifold. ThenM 4 is a TNS-manifold iff the intersection
form of 2-cycles of M 4 is non-definite.

Quasitoric TNS-manifolds are simply connected. There are
many diverse examples of such a family of manifolds. Among
the smooth projective toric TNS-manifolds one has: any toric
surface not isomorphic to CP 2; Bott towers (towers of CP 1-
bundles); equivariant blow-up of an invariant submanifold of
(complex) codimension 2 of any toric TNS-manifold. A remarkable
property of quasitoric manifolds is given by the following

Theorem 2 ([2]) LetM 2n be a quasitoric TNS-manifold. Then
any complex vector bundle ξ → M is is stably isomorphic to
a Whitney sum of complex linear vector bundles.

There is a criterion for a quasitoric manifold M 2n to be
TNS. For any element α ∈ H2(n−k)(M ;R) of the cohomology
ring of M consider the homogeneous real k-form

Qα : H2(M ;R)→ R, x 7→ 〈αxk, [M ]〉,
The work was partially supported by RFBR grant 16-51-55017
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where 〈αxk, [M ]〉 is the evaluation at the fundamental class of
M , and k = 1, . . . , n. We say that Qα is admissible if it takes
values of opposite signs as a real-valued function.

Theorem 3 ([2]) Let M 2n be a quasitoric manifold. Then it
is TNS iff the form Qα is admissible for any α ∈ H2(n−k)(M ;R),
k = 1, . . . , n.

Theorem 3 generalises Theorem 1 in the family of quasitoric
manifolds. Using Theorem 3 one deduces

Theorem 4 ([2]) Let M 6 be a smooth projective toric TNS-
manifold. Then the respective moment polytope P 3 ⊂ R3 is a
flag polytope.

In the talk we will discuss different versions of the above
TNS-criterion for a quasitoric manifold M : in terms of K-
theory of M and the volume polynomial of the respective
multifan of M .
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GKM-orbifolds and their equivariant
cohomology rings

Jongbaek Song (KAIST), jongbaek.song@gmail.com

If a topological space X with torus action satisfies certain
conditions, then one can make use of GKM theory to compute
its equivariant cohomology ring. WhenX is an orbifold, GKM-
theory is restricted to field coefficients. In this talk, we discuss
GKM theory over integer coefficients and apply this to a certain
class of GKM-orbifolds. In particular, for the case when X is
equipped with an half dimensional torus action, which we call
them torus orbifolds, we introduce the notion of weighted face
ring. It encodes the orbit space of torus action on X together
with singularities. Applying GKM-theory to this class of orbifolds,
we get a description of the integral equivariant cohomology
rings of torus orbifolds in terms of weighted face rings. This
is a joint work with Alastair Darby and Shintaro Kuroki.
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Polyhedral products and commutator
subgroups of right-angled Artin and

Coxeter groups

Yakov A.Veryovkin (Lomonosov Moscow State
University), verevkin_j.a@mail.com

We construct and study polyhedral product models for
classifying spaces of right-angled Artin and Coxeter groups,
general graph product groups and their commutator subgroups.
By way of application, we give a criterion of freeness for the
commutator subgroup of a graph product group, and provide
an explicit minimal set of generators for the commutator
subgroup of a right-angled Coxeter group.

This is a joint work with Taras Panov.
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On the geometry of regular
Hessenberg varieties

Haozhi Zeng (Fudan University),
zenghaozhi@fudan.edu.cn

Regular Hessenberg varieties are a family of subvarieties of the
full flag variety G/B. This family contains the full flag variety,
Peterson variety and perutohedral variety. This subject makes
connections between representation theory, combinatorics,
algebraic geometry and algebraic topology. In this talk we
discuss the cohomology groups of structure sheaves on regular
Hessenberg varieties and the degree of regular Hessenberg
varieties under their Kodaira embeddings.

Theorem 1 Let X = Hess(A, h) be a regular Hessenberg
variety and h(i) ≥ (i + 1) for 1 ≤ i ≤ n− 1. Then

H i(X,OX) = 0, ∀i ≥ 1.

Theorem 2 Let λ be a regular dominat weight and assume
that h(i) ≥ (i + 1) for 1 ≤ i ≤ n − 1. Then the Hilbert
polynomial of the embedding Hess(A, h) ↪→ P(Vλ) does not
depend on the regular matrix A.

This is a joint work with Hiraku Abe and Naoki Fujita.
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Vladimir Dragović (Dallas, USA) 48

Alexander N.Dranishnikov (Moscow, Russia & Florida, USA) 49

Ivan A.Dynnikov (Moscow, Russia) 51

Nikolai Yu. Erokhovets (Moscow, Russia) 5

Fuquan Fang (Beijing, China) 18

Evgeny A. Fominykh (Chelyabinsk, Russia) 53

Xin Fu (Southampton, UK) 120

Alexander A.Gaifullin (Moscow, Russia) 5

Alexey A.Glutsyuk (Moscow, Russia & Lyon, France) 54

Vassily G.Gorbounov (Moscow, Russia & Aberdeen, UK) 56

Mikhail A.Gorsky (Bielefeld, Germany) 57
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Zoran Rakić (Belgrade, Serbia) 95

149



Simone Rea (Southampton, UK)

Alexey D.Rukhovich (Moscow, Russia) 135

Soumen Sarkar (Chennai, India) 137

Takashi Sato (Osaka, Japan) 138

Karin Schaller (Tuebingen, Germany) 140

Ekaterina S. Shemyakova (Toledo, Ohio, USA) 141

Tseleung So (Southampton, UK) 142

Grigory D. Solomadin (Moscow, Russia) 143

Jongbaek Song (Daejeon, South Korea) 145

Dong Y. Suh (Daejeon, South Korea) 29

Iskander A.Taimanov (Novosibirsk, Russia) 31

Dmitry V.Talalaev (Moscow, Russia) 96
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