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RELATING STRUCTURE AND POWER:
A JUNCTION BETWEEN CATEGORICAL SEMANTICS,
MODEL THEORY AND DESCRIPTIVE COMPLEXITY

SAMSON ABRAMSKY

There is a remarkable divide in the field of logic in Computer Science,
between two distinct strands: one focussing on semantics and compo-
sitionality (“Structure”), the other on expressiveness and complexity
(“Power”). It is remarkable because these two fundamental aspects are
studied using almost disjoint technical languages and methods, by al-
most disjoint research communities. We believe that bridging this divide
is a major issue in Computer Science, and may hold the key to funda-
mental advances in the field.

In this talk, we describe a novel approach to relating categorical se-
mantics, which exemplifies the first strand, to finite model theory, which
exemplifies the second. This was introduced in [1], and substantially ex-
tended in [2, 3].

Combinatorial games such as Ehrenfeucht–Fräıssé games, pebble ga-
mes, and bisimulation games are widely used in finite model theory,
constraint satisfaction, modal logic and concurrency theory We show
how each of these types of games can be described in terms of an in-
dexed family of comonads on the category of relational structures and
homomorphisms. The index k is a resource parameter which bounds the
degree of access to the underlying structure. The coKleisli categories for
these comonads can be used to give syntax-free characterizations of a
wide range of important logical equivalences. Moreover, the coalgebras
for these indexed comonads can be used to characterize key combinato-
rial parameters: tree-depth for the Ehrenfeucht-Fräıssé comonad, tree-
width for the pebbling comonad, and synchronization-tree depth for the
modal unfolding comonad.

This approach has been extended to guarded fragments [4] and gener-
alized quantifiers [5]. Applications to homomorphism preservation the-
orems are described in [6, 7], and to Lovász-type theorems on isomor-
phisms of relational structures in [8]. An axiomatic framework in terms
of arboreal covers of extensional categories is developed in [9].
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DEFINABILITY IN
THE TURING DEGREE STRUCTURES

MARAT M. ARSLANOV

Among the most difficult and valuable problems of the computability
theory definability problems occupy the most significant place.

The most important achievements in this field include the proof of
the definability of the jump operator in the global Turing degree theory
by Shore and Slaman [5], of the set of computably enumerable (c. e.)
degrees R in the local Turing degree theory (D (≤T ∅′)) by Slaman and
Woodin [6], the existence of an infinite definable set of c. e. degrees in the
finite levels of the Ershov difference hierarchy by Arslanov, Kalimullin
and Lempp [1], the proof of the definability of the e-jump in the enumer-
ation degrees by Kalimullin [3], the definability of the all jump classes
Lown and Highn−1(n ≥ 2) in the R degrees by Nies, Shore and Sla-
man [4], the definability of the total enumeration (e- ) degrees by Cai,
Ganchev, Lempp, Miller and Soskova [2].

In recent years, an intensive search for the ”natural” definition for
the jump operator, in particular for the degree 0′ in the global Turing
degree theory, a search for natural definitions for classes of c. e. de-
grees, for jump classes Lown and Highn, for the degree classes within
different levels of the Ershov hierarchy in the local Turing degree theory
was carried out. These studies have produced a number of encouraging
results.

These problems are closely related to some other major open prob-
lems of computability theory, such as the existence of nontrivial auto-
morphisms of structures of degrees of unsolvability.

In my talk I will provide an overview of these studies.

Acknowledgements. The work was partially supported by the Russian
Science Foundation, project No. 18-11-00028.

References

[1] M. M. Arslanov, I. Sh. Kalimullin, S. Lempp. On Downey’s Conjecture J. Symb.

Log., 75, 401–441.
[2] M. Cai, H. A. Ganchev, S. Lempp, J. M. Miller and M. I. Soskova. Defining totality

in the enumeration degrees. J. Amer. Math. Soc., 29(4), 1051–1067, 2016.
[3] I. Sh. Kalimullin. Definability of the jump operator in the enumeration degrees.

J. Math. Log., 3(2), 257–267, 2003.
[4] A. Nies, R. A. Shore and T. A. Slaman. Interpretability and definability in the

recursively enumerable degrees. Proc. London Math. Soc. (3), 77, 241–291, 1998.



6

[5] R. A. Shore and T. A. Slaman. Defining the Turing Jump Mathematical Research
Letters, 6, 711–722, 1999.

[6] T. A. Slaman and W. H. Woodin. Definability in the Turing degrees. Illinois J.

Math., 30, 320–324, 1986.

Kazan Federal University, Kazan, Russia

E-mail address: Marat.Arslanov@kpfu.ru



7

HYPERSTATIONARY SETS

JOAN BAGARIA

For κ a regular uncountable cardinal, the unbounded subsets of κ are
the positive sets with respect to the Fréchet filter on κ (i.e., the set of
subsets of κ whose complement has cardinality less than κ), whereas the
stationary sets are the positive sets with respect to the closed unbounded
(club) filter on κ. There is a potential hierarchy of filters, extending the
club filter, whose positive sets give rise to the notion of hyperstationary
set (i.e. ξ-stationary for some ξ > 1): We say that a subset A of some
limit ordinal κ is 0-stationary if it is unbounded. For ξ > 0, we say that
A is ξ-stationary if and only if for every ζ < ξ, every pair of subsets S
and T of κ that are ζ-stationary simultaneously ζ-reflect to some α ∈ A,
i.e., S ∩ α and T ∩ α are both ζ-stationary in α.

Thus, A ⊆ κ is 0-stationary iff it is unbounded, it is 1-stationary iff
it is stationary, and it is 2-stationary iff every stationary S ⊆ κ reflects
to some α ∈ A, i.e., S ∩ α is stationary in α. Writing Fξκ for the set
{X ⊆ κ : κ − X is not ξ-stationary}, we have that F0

κ is the Fréchet
filter on κ, and F1

κ is the club filter. In general, Fξκ, for ξ ≥ 2, is a filter
iff κ is ξ-stationary ([1, 3]).

Now it turns out that for the filters Fξκ, ξ ≥ 2, to be non-trivial, large
cardinals are needed. Indeed, the existence of a 2-stationary cardinal κ
is equiconsistent with the existence of a weakly compact cardinal ([10]).
Moreover, in the constructible universe, L, a regular cardinal κ is (ξ+1)-
stationary iff it is Π1

ξ-indescribable ([2,3]).
The original motivation for the introduction and study of ξ-stationary

sets was the still open problem of the ordinal topological completeness
of Generalized Provability Logics GLPξ, for ξ > 2 ([4,8,9], [5,6]). The
ordinal topologies 〈τζ : ζ < ξ〉 involved in any proof of completeness
of GLPξ must be non-discrete, and the non-isolated points of the τζ
topology are exactly the ordinals that are ζ-stationary ([2]).

We shall discuss the intriguing connections between hyperstationary
sets, large cardinals, the normality of the Fξκ filters, their corresponding
ordinal topologies, and the key combinatorial issues involved in the (pos-
sible) proof of ordinal topological completeness of GLPξ. New inter-
esting set-theoretical notions, such as hypercofinalities or hypersquares
([7]) come naturally out of these connections.
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ÏÎËÓÐÅØ�ÒÊÈ ËÀÕËÀÍÀ
È ÏÎËÓÐÅØ�ÒÊÈ ÐÎÄÆÅÐÑÀ

Þ.Ë. ÅÐØÎÂ

Â ðàáîòàõ [1, 2] àâòîð îáñóæäàåò íåêîòîðûå ïîëåçíûå âçàèìîîò-
íîøåíèÿ ìåæäó àëãåáðîé è ëîãèêîé. Çäåñü áóäåò ðàññìîòðåí åù¼
îäèí èíòåðåñíûé ñëó÷àé. Â ðàáîòàõ Ëàõëàíà [3, 4, 5] óñòàíîâëå-
íû âàæíûå ñâîéñòâà ñåìåéñòâ m-ñòåïåíåé. Â ðàáîòå [3] îïðåäåëå-
íî äîâîëüíî ãðîìîçäêîå àëãåáðàè÷åñêîå ïîíÿòèå, êîòîðîå îêàçàëîñü
ýêâèâàëåíòíûì ïîíÿòèþ äèñòðèáóòèâíîé âåðõíåé ïîëóðåø¼òêè. Â
ðàáîòå [5] äëÿ îïèñàíèÿ ãëàâíûõ èäåàëîâ ïîëóðåø¼òêè ðåêóðñèâíî-
ïåðå÷èñëèìûõ m-ñòåïåíåé áûë ââåä¼í îáúåêò, êîòîðûé ïîçæå áûë
íàçâàí ïîëóðåø¼òêîé Ëàõëàíà. Â ðàáîòàõ Ñ.Þ. Ïîäçîðîâà [11, 12]
áûëî ïðîèçâåäåíî äàëüíåéøåå èññëåäîâàíèå ïîíÿòèÿ ïîëóðåø¼òêè
Ëàõëàíà. Â ðàáîòå [4] áûëà óñòàíîâëåíà òàêàÿ

Òåîðåìà. Äëÿ ëþáîé m-ñòåïåíè a ñóùåñòâóåò m-ñòåïåíü b òà-
êàÿ, ÷òî a < b è äëÿ ëþáîé m-ñòåïåíè c òàêîé, ÷òî c < b, ñïðàâåä-
ëèâî c 6 a.

Òàêæå àíàëîãè÷íàÿ òåîðåìà áûëà óñòàíîâëåíà î ïîëóðåø¼òêå ðå-
êóðñèâíî ïåðå÷èñëèìûõm-ñòåïåíåé äëÿ a, íå ÿâëÿþùåãîñÿ íàèáîëü-
øèì ýëåìåíòîì.

Â ðàáîòå àâòîðà [6] áûëî óñòàíîâëåíî ñëåäóþùåå ðàñøèðåíèå ýòîé
òåîðåìû.

Òåîðåìà. Äëÿ ëþáîé ñ÷¼òíîé äèñòðèáóòèâíîé ïîëóðåø¼òêè D è

å¼ èäåàëà I ëþáîå èçîìîðôíîå âëîæåíèå I íà èäåàë ïîëóðåø¼òêè

Lm âñåõ m-ñòåïåíåé ïðîäîëæàåòñÿ äî èçîìîðôíîãî âëîæåíèÿ D
íà èäåàë èç Lm.

Îêàçàëîñü, ÷òî ýòî ñâîéñòâî èíúåêòèâíîñòè ïîëóðåø¼òêè Lm ñïðà-
âåäëèâî è äëÿ ïîëóðåø¼òêè LF âñåõ íóìåðàöèé ëþáîãî íåîäíîýëå-
ìåíòíîãî êîíå÷íîãî ìíîæåñòâà F .

Îòñþäà ëåãêî ñëåäóåò, ÷òî â ïðåäïîëîæåíèè êîíòèíóóì-ãèïîòåçû
ëþáàÿ òàêàÿ ïîëóðåø¼òêà LF èçîìîðôíà Lm.

Â ðàáîòå [7] Å.À. Ïàëþòèíà óñòàíîâëåíà ñïðàâåäëèâîñòü ýòîãî
óòâåðæäåíèÿ áåç ïðåäïîëîæåíèÿ êîíòèíóóì-ãèïîòåçû.

Ïóñòü S � íåêîòîðîå ñåìåéñòâî ðåêóðñèâíî-ïåðå÷èñëèìûõ ìíî-
æåñòâ. Ïîëóðåø¼òêà L0

S âñåõ âû÷èñëèìûõ íóìåðàöèé ñåìåéñòâà S
íàçûâàåòñÿ ïîëóðåø¼òêîé Ðîäæåðñà ñåìåéñòâà S.
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Åñëè S � êîíå÷íîå ñåìåéñòâî, òî ïîëóðåø¼òêà Ðîäæåðñà L0
S èìååò

íàèáîëüøèé ýëåìåíò è ÿâëÿåòñÿ ïîëóðåø¼òêîé Ëàõëàíà.
Ïóñòü n � íàòóðàëüíîå ÷èñëî, Sn � {∅, {0}, . . . , {n}}. Ñ.Ä. Äå-

íèñîâ [10] óñòàíîâèë ñëåäóþùèé çàìå÷àòåëüíûé ðåçóëüòàò:

Òåîðåìà. Ïóñòü L � ïîëóðåø¼òêà Ëàõëàíà, a ∈ L. Òîãäà ëþáîå

ýôôåêòèâíîå âëîæåíèå èäåàëà â íà èäåàë L0
Sn

ïðîäîëæàåòñÿ äî ýô-

ôåêòèâíîãî âëîæåíèÿ L íà èäåàë L0
Sn
.

Îòñþäà âûòåêàåò, ÷òî äëÿ ëþáûõ íàòóðàëüíûõ n è m ïîëóðåø¼ò-
êè L0

Sn
è L0

Sm
èçîìîðôíû.

Ïîëóðåø¼òêè Ëàõëàíà, îáëàäàþùèå ýòèì ñâîéñòâîì, íàçûâàþòñÿ
óíèâåðñàëüíûìè.

Ïóñòü S è T � äâà êîíå÷íûõ ñåìåéñòâà ðåêóðñèâíî ïåðå÷èñëèìûõ
ìíîæåñòâ. Êîãäà èõ ïîëóðåø¼òêè Ðîäæåðñà L0

S è L0
T èçîìîðôíû?

Íåòðóäíî óñòàíîâèòü, ÷òî åñëè ÷àñòè÷íî óïîðÿäî÷åííûå ìíîæå-
ñòâà 〈S,⊆〉 è 〈T,⊆〉 èçîìîðôíû, òî è èõ ïîëóðåø¼òêè Ðîäæåðñà òàê-
æå èçîìîðôíû.

Òåîðåìà Äåíèñîâà ïîêàçûâàåò, ÷òî ýòî äîñòàòî÷íîå óñëîâèå íå
ÿâëÿåòñÿ íåîáõîäèìûì.

Äëÿ êàæäîãî ñåìåéñòâà ðåêóðñèâíî ïåðå÷èñëèìûõ ìíîæåñòâ S
÷åðåç S0 îáîçíà÷èì ñåìåéñòâî âñåõ íåìàêñèìàëüíûõ (ïî âêëþ÷åíèþ)
ìíîæåñòâ èç S. (Òàê, S0

n = {∅}).
Â ðàáîòå [8] óñòàíîâëåíî, ÷òî èçîìîðôèçì ÷àñòè÷íî óïîðÿäî÷åí-

íûõ ìíîæåñòâ 〈S0,⊆〉 è 〈T 0,⊆〉 ÿâëÿåòñÿ íåîáõîäèìûì äëÿ èçîìîð-
ôèçìà èõ ïîëóðåø¼òîê Ðîäæåðñà.

Î.Â. Êóäèíîâ ïðåäïîëîæèë, ÷òî ýòè óñëîâèÿ ÿâëÿþòñÿ è äîñòà-
òî÷íûìè.

Äî íàñòîÿùåãî âðåìåíè ýòà ãèïîòåçà íå äîêàçàíà.
Äðóãèì îòêðûòûì âîïðîñîì ÿâëÿåòñÿ: Áóäóò ëè (èçîìîðôíûå)

ïîëóðåø¼òêè Ðîäæåðñà L0
Sn

è L0
Sm

èçîìîðôíû è êàê íóìåðîâàííûå
ìíîæåñòâà?

Â ðàáîòå àâòîðà [9] áûëî ïîëó÷åíî íåêîòîðîå ðàñøèðåíèå ðåçóëü-
òàòà Äåíèñîâà. Èñïîëüçóÿ òåõíèêó èç ýòîé ðàáîòû, ìîæíî óñòàíî-
âèòü ñëåäóþùóþ òåîðåìó:

Òåîðåìà. Ïîëóðåø¼òêà Ðîäæåðñà L0
Sω

ñåìåéñòâà Sω � {∅, {0},
{1}, . . .} ÿâëÿåòñÿ óíèâåðñàëüíîé ðåø¼òêîé Ëàõëàíà.

Ïî÷åìó ðàáîòû Ëàõëàíà [4, 5] îêàçàëèñü îïóáëèêîâàíû â æóðíà-
ëå ¾Àëãåáðà è ëîãèêà¿? Ýòî ñåé÷àñ íàø æóðíàë ïîïàë â Q1 áàçû
Scopus. À òîãäà (1972) ¾Àëãåáðà è ëîãèêà¿ äàæå íå ÿâëÿëñÿ æóð-
íàëîì (à áûë òðóäîì îäíîèì¼ííîãî ñåìèíàðà). Äóìàþ, ÷òî ñòàòüè
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[4, 5], òåõíè÷åñêè äîâîëüíî ñëîæíûå, íå ïðåäñòàâëÿëè øèðîêîãî èí-
òåðåñà äëÿ èññëåäîâàòåëåé, êîòîðûå íå îáëàäàëè äîñòàòî÷íûì îïû-
òîì îäíîâðåìåííî â òåîðèè âû÷èñëèìîñòè è â àëãåáðå.

Ïîýòîìó ¾Àëãåáðà è ëîãèêà¿ îêàçàëàñü íàèáîëåå ïîäõîäÿùèì ìå-
ñòîì äëÿ ïóáëèêàöèè ýòèõ çàìå÷àòåëüíûõ ñòàòåé, êîòîðûå îêàçàëè
îãðîìíîå âëèÿíèå íà äàëüíåéøèå èññëåäîâàíèÿ.
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COMPARING Π1
2-PROBLEMS IN COMPUTABILITY

THEORY AND REVERSE MATHEMATICS

DENIS R. HIRSCHFELDT

Reverse mathematics gives us a way to compare the relative strength
of theorems by establishing implications and nonimplications over a
weak subsystem of second-order arithmetic, typically RCA0, which cor-
responds roughly to computable mathematics. In many cases, nonimpli-
cations over RCA0 are proved using ω-models, i.e., models of RCA0 with
standard first-order part. Implication over RCA0 and over ω-models
are not fine enough for some purposes, however, so other notions of
computability-theoretic reduction between theorems have been exten-
sively studied. These are particularly well-adapted to a class of theo-
rems that includes a large proportion of those that have been studied in
reverse mathematics: A Π1

2-problem is a sentence

∀X [Θ(X) → ∃Y Ψ(X,Y )]

of second-order arithmetic such that Θ and Ψ are arithmetic. The term
“problem” reflects a computability-theoretic view that sees such a sen-
tence as a process of finding a suitable Y given an X satisfying certain
conditions.

This talk will discuss some of these approaches to studying the rel-
ative strength of Π1

2-problems, focusing in particular on combinatorial
examples, including work in [2, 1].
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ADVENTURES BEYOND POSSIBLE WORLDS

WESLEY H. HOLLIDAY

I will survey a recent line of research [16] on generalizations of possible
world semantics, building on the “possibility semantics” of Humberstone
[17] and on general algebraic semantics for nonclassical logic. So far
these investigations have focused on the following areas of logic:

Boolean algebra. The standard Stone duality for Boolean algebras
is non-constructive, relying on the ultrafilter principle. Inspired by work
on possibility semantics [11], a choice-free analogue of Stone duality for
Boolean algebras has been developed in [6].

Modal logic. Humberstone [17] originally gave possibility semantics
for propositional modal logic. His framework has been generalized and
systematically investigated in [10, 11, 2, 19, 20]. Possibility semantics
for first-order modal logic has also been developed in [1, 9, 16].

One motivation for going beyond possible world semantics is the ex-
istence of modal logics that cannot be characterized by any class of
possible world frames (Kripke incompleteness). Modal incompleteness
results for even more general semantics are covered in [14].

Modal logic with propositional quantifiers. Kripke incomplete-
ness arises in an especially natural way with more expressive languages,
such as the language of modal logic with propositional quantifiers. Al-
gebraic semantics for this language are investigated in [13, 12, 7, 8].

Intuitionistic logic. Classical possibility semantics has been gener-
alized to “nuclear semantics” for intuitionistic logic in [3, 4, 18].

Inquisitive logic. Inquisitive logic aims to expand the purview of
logic beyond the logic of statements to include the logic of questions.
In [5], the choice-free Stone duality of [6] is used to give semantics for
inquisitive logic on a classical base. In [15], the nuclear perspective of [4]
is used to give semantics for inquisitive logic on an intuitionistic base.

In addition to an overview of this work, I will discuss several open
problems and directions for future research.
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ON REFLEXIVE SUBJECTIVE PROBABILITY

LEON HORSTEN

A reflexive subjective probability statement is a statement in which
the notion of subjective probability occurs in the scope of an occurrence
of the subjective probability predicate. For example:

It seems highly likely to me that
if I am very confident that I will get the job,

I will perform well at the interview and will be offered the job.

Questions about such statements play an increasingly important role in
formal epistemology.

An analogy with reflexive (or typefree) truth suggests itself. Reflexive
truth has been studied intensively over the past decades, both from a
proof-theoretic and from a model-theoretic perspective. In this context
it is clear that we must somehow deal with the semantic paradoxes, but
we have been relatively (albeit not totally!) successful with doing so.
For starters, on the proof theoretic side, we have a fairly good idea of
what should count as incontrovertible basic principles of typefree truth.1

In the case of reflexive subjective probability, analogues of the se-
mantic paradoxes have to be confronted. But surprisingly little work
has been done in this area.2 It is at present not even very clear what the
axiomatic core of a theory of reflexive subjective probability, i.e., the
analogue of Kolmogorov’s axioms for typefree probability, looks like. To
address this question is a primary aim of my talk. Against a resulting
background core system, I will then consider less elementary principles
such as infinite additivity principles and probabilistic reflection princi-
ples.

References

[1] C. Campbell-Moore. Self-Referential Probability. PhD thesis, Ludwig-Maximili-

ans-Universität München, 2016.
[2] H. Friedman and M. Sheard. An axiomatic approach to self-referential truth.

Annals of Pure and Applied Logic, 33, 1–21, 1987.

[3] H. Leitgeb. From type-free truth to type-free probability. In: G. Restall and G.
Russell, eds., New Waves in Philosophical Logic, pp. 84–94. Palgrave Macmillan,

2012.

1See for instance [2].
2Exceptions are [3] and [1].



16

Fachbereich Philosophie, Universität Konstanz, Konstanz, Germany

E-mail address: leon.horsten@uni-konstanz.de



17

STRICT-Π1
1 REFLECTION:

A PROOF-THEORETIC PERSPECTIVE

GERHARD JÄGER

Strict-Π1
1 reflection is a truly remarkable principle. It has been dis-

cussed in detail, for example, in Barwise [1]. However, the focus there
is on the consequences of strict-Π1

1 reflection for generalized recursion
theory, definability theory, and the model theory of infinitary languages.

In this lecture we change the perspective and look at strict-Π1
1 re-

flection from the point of view of proof theory. And for doing that we
introduce two environments for sets and classes:

• A “tamed” version in which the interaction between sets and
classes is severely limited and, as a consequence, quantification
over classes can be considered as a sort of bounded quantifica-
tion.
• The “full” version in which sets and classes interact as in von

Neumann-Bernays-Gödel set theory.

In both cases we identify the least Σ1 and Π2 models of the respective
theories and clarify their relationship to Kripke-Platek set theory and
power Kripke-Platek. The ordinal analysis we need to achieve that
builds on and extends methods recently developed in [2].
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APPLICATIONS OF PROOF THEORY TO CORE
MATHEMATICS: RECENT DEVELOPMENTS

ULRICH KOHLENBACH

In this talk we survey some recent developments in the project of
applying proof-theoretic transformations to obtain new quantitative and
qualitative information from given proofs in areas of core mathematics
such as nonlinear analysis, convex optimization and geodesic geometry
([2, 3]). We will discuss some of the following items:

(1) The recent extraction of uniform rates of convergence for the
ε-capture in the Lion-Man game in the context metric spaces
X satisfying a suitable ‘betweennes property’ ([7]). Here a low
complexity rate of convergence is extracted from a proof that
made iterated use of sequential compactness arguments (i.e.
arithmetical comprehension). The extraction also replaced the
strong assumption of the compactness of X by its boundedness.

(2) In [1], we extracted the first explicit moduli of uniform continu-
ity from noneffective continuity proofs for concepts of proximal
maps in uniformly convex Banach spaces. It turned out, that
in order to get a modulus which (as desired) is independent of
the scalar involved one has to modify the previously suggested
definition of such maps giving rise to a new definition.

(3) Most recently, in [8] together with P. Pinto, we analyzed proofs
due to T. Suzuki which reduce viscosity generalizations of con-
vergence proofs in optimization to the usual versions in terms
of rates of convergence and metastability.

(4) In [6], it is shown how the assumption of metric regularity gives
low complexity rates of convergence for algorithms which in gen-
eral do not have computable rates of convergence. In the par-
ticular case of the uniqueness of the solution such an approach
is used in [9] for a wide range of algorithms computing zeros
of accretive set-valued operators as used for abstract Cauchy
problems.

(5) An arithmetization of a highly noneffective convergence proof
for the computation of so-called sunny nonexpansive retractions
has recently led to effective bounds in [10] and is used in [5] to
obtain metastability of a strongly convergent Halpern-type form
of the proximal point algorithm in Banach spaces.

(6) A polynomial rate of convergence in Bauschke’s celebrated so-
lution of the ‘zero displacement conjecture’ has been extracted
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from Bauschke’s proof which heavily uses the machinery of max-
imal monotone operators ([4]). Very recently, this was much
generalized to cover so-called averaged mappings by Sipoş [11].
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[10] U. Kohlenbach, A. Sipoş. The finitary content of sunny nonexpansive retractions.

Communications in Contemporary Mathematics, 23:1950093, 63 pp. (2021).

[11] A. Sipoş. Quantitative inconsistent feasibility for averaged mappings. Submit-
ted, 2020. arXiv:2001.01513

Department of Mathematics, Technische Universität Darmstadt, Darm-

stadt, Germany

E-mail address: kohlenbach@mathematik.tu-darmstadt.de

https://arxiv.org/abs/2001.01513


20

POTENTIALISM AND CRITICAL PLURAL LOGIC

ØYSTEIN LINNEBO

Potentialism is the view that certain types of entity are successively
generated, in such a way that it is impossible to complete the process of
generation. What is the correct logic for reasoning about all entities of
some such type? Under some plausible assumptions, classical first-order
logic has been shown to remain valid, whereas the traditional logic of
plurals needs to be restricted. In this talk, I answer the open question of
what is the correct plural logic for reasoning about such domains. The
answer takes the form of a critical plural logic. An unexpected benefit
of this new logic is that it paves the way for an alternative analysis of
potentialism, which is simpler and more user-friendly than the extant
modal analysis.
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ADVENTURES IN LAMBEK CALCULUS

ANDRE SCEDROV

Language and relational models, or L-models and R-models, are two
natural classes of models for the Lambek calculus. Completeness w.r.t.
L-models was proved by Pentus and w.r.t. R-models by Andreka and
Mikulas. It is well known that adding both additive conjunction and
disjunction together yields incompleteness, because of the distributive
law. The product-free Lambek calculus enriched with conjunction only,
however, is complete w.r.t. L-models (Buszkowski) as well as R-models
(Andreka and Mikulas). The situation with disjunction turns out to be
the opposite: we prove that the product-free Lambek calculus enriched
with disjunction only is incomplete w.r.t. L-models as well as R-models,
in the non-commutative as well as the commutative (linear) case. The
derivability problem for the Lambek calculus with conjunction and dis-
junction is known to be decidable. Adding the explicit multiplicative
unit constant changes things drastically. Namely, if we extend Lambek
calculus with conjunction by certain simple rules for the multiplicative
unit, sound in L-models, then the system becomes undecidable, even
in the small fragment with only one implication, conjunction, and unit.
In the language with the unit, the algebraic logic of all L-models is
strictly included in (does not coincide with) the algebraic logic of reg-
ular L-models. This is joint work with Max Kanovich and Stepan L.
Kuznetsov.

In the second part of the talk we discuss structural restrictions of
linear logic modalities. Examples of such refinements are subexponen-
tials, light linear logic, and soft linear logic. We bring together these
refinements of linear logic in a non-commutative setting. We introduce a
non-commutative substructural system with subexponential modalities
controlled by a minimalistic set of rules. Namely, we disallow the con-
traction and weakening rules for the exponential modality and introduce
two primitive subexponentials. One of the subexponentials allows the
multiplexing rule in the style of soft linear logic and light linear logic.
The second subexponential provides the exchange rule. For this system,
we construct a sequent calculus, establish cut elimination, and also pro-
vide a complete focused proof system. We illustrate the expressive power
of this system by simulating Turing computations and categorial gram-
mar parsing for compound sentences. Using the former, we prove un-
decidability results. The new system employs Lambek’s non-emptiness
restriction, which is incompatible with the standard (sub)exponential



22

setting. Lambek’s restriction is crucial for applications in linguistics:
without this restriction, categorial grammars incorrectly mark some un-
grammatical phrases as being correct. This is joint work with Max
Kanovich, Stepan L. Kuznetsov, and Vivek Nigam.
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REASONING ABOUT EPISTEMIC SUPERIORITY

SONJA SMETS

Dynamic-epistemic logics and temporal-epistemic logics have been
used as a fruitful basis to model various interactive scenarios that involve
the change in epistemic attitudes of communicating agents. While these
systems are excellent for the purpose of modelling several communication-
based scenarios, the downside is that they require us to make explicit
all the specific sentences that are being communicated. This level of
specification can be too strong for several applications. In particular
when we aim to model scenarios in which agents communicate ‘all they
know’ (by e.g. giving access to one’s information database to all or some
of the other agents), as well as more complex informational events, such
as hacking. In these cases we assume that some agent(s) instantly ‘read’
all the information stored at a specific source.

Modelling such scenarios requires us to extend the framework of epis-
temic logics to one in which we abstract away from the specific announce-
ment and formalize directly the action of sharing ‘all you know’ (with
some or all of the other agents). In order to do this, we introduce these
sharing ‘all you know’-actions and formalize their effect, i.e. the state of
affairs in which one agent (or group of agents) has epistemic superiority
over another agent (or group). Concrete we capture the epistemic supe-
riority of agents by enriching the language with comparative epistemic
assertions for individual and groups of agents (as such extending the
comparison-types considered in [5]).

Another ingredient that we add to our logical system, is a new modal
operator for ‘common distributed knowledge’, used to model situations
in which we achieve common knowledge in a larger group of agents
by information-sharing only within each of the subgroups. This new
concept of ‘common distributed knowledge’ combines features of both
common knowledge and distributed knowledge. We position this work
in the context of other known work related to: the problem of converting
distributed knowledge into common knowledge via acts of sharing [4];
the more semantic approach in [2] on communication protocols requiring
agents to “tell everybody all they know”; the work on public sharing
events with a version of common distributed knowledge in [1]; and the
work on resolution actions in [6].

In this presentation I will focus on the above described tools to reason
about epistemic superiority and common distributed knowledge, which



24

have led to completely axiomatized and decidable logical systems. This
work is fully based on recent joint work with A. Baltag in [3].
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AUTOMORPHISM GROUPS
OF HOMOGENEOUS STRUCTURES

KATRIN TENT

The relationship between geometric structures and their automor-
phism groups has been the focus of Klein’s Erlanger Programm postu-
lated in 1872. In the meantime there has been a wide range of research
in the spirit of the program, not just in geometric structures but also
with respect to the automorphism groups of other structures. The re-
lationship between structures and their automorphism groups has also
given rise to many interesting model theoretic questions.

There are a number of important examples where the automorphism
group of a structure and the structure itself carry exactly the same in-
formation, in the sense that one can be recovered from the other without
any loss of detail. This is, for example, the case for projective spaces
and their automorphism groups, but can also be detected in many other
settings. In the model theoretic sense this can often be expressed as a
bi-interpretation between the automorphism group and the underlying
structure, see e.g. [7].

Of particular interest are the automorphism groups of homogeneous
structures, which often arise from the model theoretic construction known
as the Fräıssé limit. These constructions often lead to ω-categorical
structures, i.e. structures which have a unique countable model up to
isomorphism. In this case, the connection between the structure and
its automorphism group is also reflected in the well-known result due to
Coquand stating that two ω-categorical structures are bi-interpretable
if and only if their automorphism groups are isomorphic as topological
groups, where a basis of the topology for such an automorphism group is
given by pointwise stabilizers of finite sets, turning these automorphism
groups into polish groups.

This characterization raises the question how difficult it is (in the
sense of Borel reducibility) to detect whether two such structures have
isomorphic automorphism groups. In joint work with Nies and Schlicht
[6] we use the concept of a coarse group to show that the isomorphism
relation for oligomorphic subgroups of S∞ is Borel reducible to a Borel
equivalence relation with all classes countable.

In a different direction it can be noted that the automorphism groups
of very homogeneous structures are often simple groups or have very few
(natural) normal subgroups, see e.g. [5, 8, 9, 1, 3, 2]. From the model
theoretic perspective the simplicity of an automorphism group can often
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be deduced from the existence of a notion of independence, very similar
to the one studied in stability theory. While many of the structures to
which this setting applies are far from stable, the existence of a station-
ary independence relation often sheds new light on its automorphism
group. This is particularly visible in the case of the Urysohn space, or
variations thereof, random graphs, etc.

In my talk I will give a survey of some results relating to these ques-
tions.
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SYMMETRIC PROPERTIES
AND BOOLEAN COMPLEXITY

ALASDAIR URQUHART

A property of sets of CNF formulas is symmetric if it is preserved
under complementation of variables. Let CNF∆ be a formulation of CNF
where distinct formulas have disjoint sets of variables, and SAT∆ the
satisfiable formulas in CNF∆. The main theorem says that no symmetric
property of sets of CNF formulas can force an algorithm for SAT∆ to
take superlinear time. This result is based on observations of Ryan
Williams from 2010.
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LÖB’S PRINCIPLE FOR PAIR THEORIES

ALBERT VISSER

Can we eliminate the various design choices from the statement of
the Second Incompleteness Theorem? What makes a coordinate-free
version indeed a version of Second Incompleteness Theorem?

There are various approaches to the coordinate-free treatment of the
Second Incompleteness Theorem. In this talk, we will zoom in on one
such approach. (Some other, but closely related approaches are pursued
in [4] and [5].)

Consider a recursively enumerable sequential theory U with full in-
duction for a designated interpretation of number theory N . We can
define a big Kripke model (a ‘Kripke Universe’) M with as nodes mod-
els of U , such that necessity in this model coincides with arithmetised
provability in U relativised to N . (See [2], [3], and [1] for some of the
ingredients of the result.) The definition of the accessibility relation of
M is coordinate-free in the sense that it does not require design choices
connected to arithmetisation. We call necessity in M: p-validity. Thus,
the equivalence of p-validity with arithmetised provability can be con-
sidered as p-validity elimination.

If we drop the demand that we have full induction on some interpre-
tation of number theory N , we loose p-validity elimination. So, it would
seem that, sadly, the idea of using the big model for a coordinate-free
treatment of the Second Incompleteness Theorem goes down the drain.
But let’s not be hasty. I will argue that, as long as we are aiming at
the Second Incompleteness Theorem, there is a modified result that may
still count as a coordinate-free treatment. What is more, I will argue
that we can view the apparent bug as a feature.

Using an idea of Fedor Pakhomov, we can employ p-validity to prove
a version of the Second Incompleteness Theorem for Pair Theories —a
place where (full) arithmetisation cannot go. We will sketch an argu-
ment that shows that we even get Löb’s Principle for non-modal sen-
tences in the case of pair theories.

The full logic of p-validity is currently unknown both for pair theories
and for sequential theories.

Acknowledgements. I am grateful to Fedor Pakhomov for sharing his
insights on these matters.
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