Задачи к курсу "Модальные логики предикатов и их модели" (осень 2024)

- 1. Пусть a,b различные буквы некоторого алфавита. Докажите, что [a/b][b/a] не тождественная подстановка и запишите ее в виде $[\alpha/\mathbf{s}]$.
- **2.** Пусть $[\alpha/\mathbf{s}]$, $[\beta/\mathbf{t}]$ подстановки букв, где списки \mathbf{s} , \mathbf{t} не пересекаются. Найдите γ , для которого $[\alpha/\mathbf{s}][\beta/\mathbf{t}] = [\gamma/\mathbf{s}\mathbf{t}]$.
- **3.** Формулы можно записывать так, чтобы они не содержали скобок: вместо $(A \lor B)$ пишем $\lor AB$, вместо $(A \land B) \land AB$ и т.д. ("польская запись", введена Яном Лукасевичем).
 - (а) Сформулируйте рекурсивное определение формулы в польской записи.
 - (б) Сформулируйте и докажите лемму об однозначном анализе пропозициональных формул в польской записи.
- **4.** (a) Докажите, что собственное начало формулы не может быть формулой.
 - (б) Докажите, что собственный конец формулы не может быть формулой.
- **5.** Докажите, что конец формулы не может быть началом другой формулы.
- **6.** Пусть [K]x[x/a]A = [K]x[x/b]B, где A, B предикатные формулы ([K] обозначает квантор). Как связаны A и B?
- 7. Пусть $[\mathbf{b}/\mathbf{a}]$ подстановка свободных переменных, $S = [C_1, \dots, C_n/Q_1, \dots, Q_n]$ формульная подстановка. Обозначим:

$$[\mathbf{b}/\mathbf{a}]S := [[\mathbf{b}/\mathbf{a}]C_1, \dots, [\mathbf{b}/\mathbf{a}]C_n/Q_1, \dots, Q_n].$$

Докажите, что $[\mathbf{b}/\mathbf{a}]SA = ([\mathbf{b}/\mathbf{a}]S)A$, если \mathbf{a} не содержит переменных из A.

- **8.** Формула называется *чистой*, если в ней никакая связанная переменная не встречается дважды непосредственно после кванторов. Докажите, что конгруэнтные чистые формулы сильно конгруэнтны.
- 9. Докажите, что любая формула конгруэнтна некоторой чистой формуле.

- **10.** Докажите, что $\mathbf{QH} \vdash \neg \neg \neg A \leftrightarrow \neg A$.
- **11.** Докажите, что $\mathbf{QH} \vdash \neg \neg (A \land B) \leftrightarrow \neg \neg A \land \neg \neg B$.
- **12.** Докажите, что $\mathbf{QH} \vdash \neg \neg (A \to B) \leftrightarrow \neg \neg A \to \neg \neg B$.
- **13.** Докажите, что $\mathbf{QH} \vdash \neg (A \to B) \leftrightarrow \neg \neg A \land \neg B$.
- **14.** Выразите в **H** формулу $\neg(p \land q)$ через \neg, \lor, p, q .
- **15.** (а) Докажите, что $\mathbf{QH} \vdash \forall x \neg A(x) \leftrightarrow \neg \exists x A(x)$.
 - (b) Докажите, что $\mathbf{QH} \vdash \exists x \neg A(x) \rightarrow \neg \forall x A(x)$.
- **16.** (а) Докажите, что $\mathbf{QH} \vdash \neg A \land \neg B \leftrightarrow \neg (A \lor B)$.
 - (b) Докажите, что $\mathbf{QH} \vdash \neg A \lor \neg B \to \neg (A \land B)$.
- 17. (а) Докажите, что $\mathbf{H} \not\vdash \neg (p \land q) \rightarrow \neg p \lor \neg q$.
 - (b) Докажите, что $\mathbf{H} \not\vdash \neg \neg (p \lor q) \rightarrow \neg \neg p \lor \neg \neg q$.
- **18.** Докажите, что если A пропозициональная интуиционистская формула и $\mathbf{CL} \vdash A$, то $\mathbf{H} \vdash \neg \neg A$ (*теорема Гливенко*).
- **19.** Докажите, что если A пропозициональная модальная формула и $\mathbf{S5} \vdash A$, то $\mathbf{S4} \vdash \Box\Box \Diamond A$ (модальный аналог теоремы Гливенко).
- 20. Какие из следующих формул являются теоремами QH?
 - (a) $(\exists x P(x) \to q) \to \forall x (P(x) \to q)$,
 - (b) $(\forall x P(x) \to q) \to \exists x (P(x) \to q),$
 - (c) $(q \to \exists x P(x)) \to \exists x (q \to P(x)),$
 - (d) $(q \to \forall x P(x)) \to \forall x (q \to P(x))$.
- **21.** Обозначим $\mathbf{HJ} := \mathbf{H} + \neg p \lor \neg \neg p$ (*логика Янкова*; другое обозначение \mathbf{KC}).

Докажите, что

$$\mathbf{H} + \neg (p \wedge q) \rightarrow \neg p \vee \neg q = \mathbf{H} + \neg \neg (p \vee q) \rightarrow \neg \neg p \vee \neg \neg q = \mathbf{HJ}.$$

- **22.** (a) Докажите, что $\mathbf{QH} \vdash \exists x \neg \neg A(x) \rightarrow \neg \neg \exists x A(x)$.
 - (b) Докажите, что $\mathbf{QH} \vdash \neg \neg \forall x A(x) \rightarrow \forall x \neg \neg A(x)$.
- **23.** Постройте замкнутую формулу A с одноместной предикатной буквой P, для которой $\mathbf{QH} \not\vdash A \lor \neg A$.
- **24.** Постройте замкнутую формулу A с одноместной предикатной буквой P, для которой $\mathbf{QH} \not\vdash \neg \neg A \to A$.
- **25.** Обозначим

$$DNS := \forall x \neg \neg P(x) \rightarrow \neg \neg \forall x P(x).$$

Докажите, что $\mathbf{QH} \not\vdash DNS$.

26. Обозначим

$$KF := \neg \neg \forall x (P(x) \lor \neg P(x)) (формула Куроды).$$

Докажите, что $\mathbf{QH} + KF = \mathbf{QH} + DNS$.

27. Обозначим

$$Wel_1 := \exists y \forall x (P(x) \to P(y)),$$

 $Wel'_1 := (q \to \exists x P(x)) \to \exists x (q \to P(x)).$

- (а)Докажите, что $\mathbf{QH} + Wel_1 = \mathbf{QH} + Wel'_1$.
- (b) Докажите, что $\mathbf{QH} \not\vdash Wel_1$.
- **28.** Обозначим

$$Wel_2 := \exists y \forall x (P(y) \to P(x)),$$

$$Wel_2' := (\forall x P(x) \to q) \to \exists x (P(x) \to q).$$

- (a) Докажите, что $\mathbf{QH} + Wel_2 = \mathbf{QH} + Wel_2'$.
- (b) Докажите, что $\mathbf{QH} \not\vdash Wel_2$.
- **29.** Как связаны $\mathbf{QH} + Wel_2$ и $\mathbf{QH} + Wel_1$?
- **30.** Докажите, что если **QCL** \vdash A, то **QH** + KF $\vdash \neg \neg A$ (предикатная теорема Гливенко).
- **31.** Докажите, что **QS4** $\not\vdash \Box \Diamond \forall x \Box P(x) \leftrightarrow \Box \forall x \Diamond \Box P(x)$.
- Сформулируйте и докажите модальный аналог предикатной теоремы Гливенко.
- **33.** *Перевод Гёделя Генцена A^N* интуиционистской предикатной формулы A определяется рекурсивно:
 - \bullet $\perp^N = \perp$.
 - $A^N = \neg \neg A$, если A атомарная (кроме \bot),
 - $(A \vee B)^N = \neg \neg (A^N \vee B^N)$,
 - $(A \wedge B)^N = (A^N \wedge B^N),$
 - $\bullet \ (A \to B)^N = (A^N \to B^N),$
 - $(\exists x [x/a]A)^N = \neg \neg \exists x [x/a](A^N),$
 - $(\forall x [x/a]A)^N = \forall x [x/a](A^N)$.

Докажите, что если $\mathbf{QCL} \vdash A$, то $\mathbf{QH} \vdash A^N$.

34. Обозначим

$$MP := \neg \neg \exists x P(x) \rightarrow \exists x \neg \neg P(x) \ ($$
сильный принцип Маркова $),$

Докажите, что $\mathbf{QH} \not\vdash MP$.

- **35.** (а) Докажите, что $\mathbf{QH} + Wel_2 \vdash MP$.
 - (b) Докажите, что $\mathbf{QH} + MP \not\vdash Wel_2$.

36. Обозначим

$$MP^+ := \neg \exists x P(x) \lor \exists x \neg \neg P(x).$$

- (a) Докажите, что ${\bf QH} + MP^+ \vdash MP$.
- (b) Докажите, что ${\bf QH} + MP ⊬ MP^+$.
- **37.** Докажите, что **QHJ** + $CD \vdash MP^+$.
- **38.** Докажите, что **QHJ** + $CD \not\vdash Wel_2$.
- **39.** Докажите, что **QHJ** + $CD \not\vdash Wel_1$.
- **40.** Докажите, что **QS4** + $Ba \vdash CD^T$.
- 41. Обозначим

$$VW := \Box \exists x P(x) \rightarrow \exists x \Box P(x)$$
 (формула фон Вригта).

Докажите, что $\mathbf{QK} + VW \vdash Ba$.

- **42.** Найдите все предикатные шкалы Крипке, в которых общезначима формула VW.
- **43.** Докажите, что $\mathbf{QK} + Ba \not\vdash VW$.
- 44. Обозначим

$$CD1 := \forall x (P(x) \lor \neg P(x)) \to \forall x P(x) \lor \neg \forall x P(x).$$

Докажите, что $\mathbf{QH} + CD \vdash CD1$.

- **45.** Докажите, что $\mathbf{QH} + CD1 \not\vdash CD$.
- 46. Обозначим

$$CD2 := \forall x (P(x) \vee \neg P(x)) \to \exists x P(x) \vee \neg \exists x P(x).$$

Докажите, что $\mathbf{QH} + CD \vdash CD2$.

- **47.** Докажите, что $\mathbf{QH} + CD2 \not\vdash CD$.
- **48.** Как связаны CD1 и CD2?
- **49.** Обозначим: $\mathbf{KB} := \mathbf{K} + \Diamond \Box p \to p$. Докажите, что $\mathbf{QKB} \vdash Ba$.
- **50.** Пусть Λ полная по Крипке пропозициональная модальная логика. Докажите, что если $\mathbf{Q}\Lambda \vdash Ba$, то $\Lambda \supseteq \mathbf{KB}$.
- **51.** Постройте модальную формулу, содержащую только одноместные предикатные символы, которая общезначима в любой **QS5**-шкале Крипке с конечной областью, но невыводима в **QS5**.
- **52.** Постройте интуиционистскую формулу, содержащую только одноместные предикатные символы, которая общезначима в любой интуиционистской шкале Крипке с постоянной конечной областью, но невыводима в $\mathbf{QH}+CD$.

- **53.** Докажите, что $\mathbf{QH} + AU_1 + \pi(A) \vdash A$ для любой интуиционистской формулы A (обозначения AU_1 , $\pi(A)$ см. в лекции 7).
- **54.** Докажите, что $\mathbf{QK} + AU_1 + \pi(A) \vdash A$ для любой модальной формулы A.
- **55.** Докажите, что логика $\mathbf{QK} + AU_1$ полна по Крипке.
- **56.** Докажите, что логика $\mathbf{QH} + AU_1$ полна по Крипке.
- **57.** Используя предыдущие задачи, докажите, что если $L_{\pi} = \Lambda$, то $\mathbf{Q}\Lambda \subseteq L \subseteq \mathbf{Q}\Lambda + AU_1$ (для модальной или суперинтуиционистской логики L).
- **58.** Докажите, что если модальная логика L полна (в семантике Крипке), то $L + AU_1$ полна.
- **59.** Докажите, что если суперинтуиционистская логика L полна (в семантике Крипке), то $L + AU_1$ полна.
- **60.** Докажите, что отображение $\Lambda \mapsto \mathbf{Q}\Lambda + AU_1$ задает биекцию множества суперинтуиционистских пропозициональных логик на множество суперинтуиционистских предикатных логик, содержащих AU_1 ; аналогично для модальных логик.
 - Будем использовать обозначение правил вывода $A_1, \ldots, A_n//B$ $(A_i nocылки, B заключение).$
- **61.** Применяя теорему о полноте, докажите, что правило вывода $\Box A//A$ для замкнутых формул A допустимо в \mathbf{QK} .
- **62.** Допустимо ли в **QK** правило вывода $\forall x \Box A(x) / / \Box \forall x A(x)$ (где $\forall x A(x)$ замкнутая формула)?
- **63.** Докажите, что правило вывода $\exists x A(x)//\forall x A(x)$ (где $\forall x A(x)$ замкнутая формула) недопустимо в **QH**.
- **64.** Докажите, что правило вывода $\Box A / / A$ для произвольных формул A допустимо в \mathbf{QK} .
- **65.** (а) Докажите, что правило вывода $\Diamond A//A$ для замкнутых формул A допустимо в \mathbf{QK} .
 - (b) Допустимо ли оно в ${\bf Q}{\bf K} + Ba$?
- **66.** Докажите, что правило вывода $\Diamond A//A$ для произвольных формул A допустимо в \mathbf{QK} .
- **67.** (а) Докажите, что правило вывода $\Diamond A//A$ для замкнутых формул A недопустимо в **QS4**.
 - (b) Допустимо ли оно в **QS5**?
- **68.** Докажите, что правило вывода $\Diamond A//A$ для замкнутых формул A недопустимо в \mathbf{QT} .

- **69.** Используя теорему о полноте, докажите, что если $\mathbf{QH} \vdash A \lor B$, то $\mathbf{QH} \vdash A$ или $\mathbf{QH} \vdash B$ для замкнутых формул A, B (дизъюнктивное свойство).
- **70.** Докажите дизъюнктивное свойство в ${\bf QH}+CD$ для произвольных формул A,B.
- **71.** Докажите, что **QH** логика класса всех интуиционистских шкал Крипке со счетными областями в каждой точке.
- **72.** Докажите дизъюнктивное свойство в \mathbf{QH} для произвольных формул A,B.
- **73.** Используя теорему о полноте, докажите, что если $\mathbf{QK} \vdash \Box A \lor \Box B$, то $\mathbf{QK} \vdash A$ или $\mathbf{QK} \vdash B$ для замкнутых формул A, B (дизтюнктивное свойство).
- 74. Выполняется ли дизъюнктивное свойство из предыдущей задачи для ${f QS5}$?
- **75.** Докажите, что суперинтуиционистская предикатная логика класса всех шкал Крипке с конечным множеством миров не совпадает с **QH** (указание: рассмотрите формулу Куроды).
- **76.** Используя предыдущую задачу, докажите, что модальная предикатная логика класса всех рефлексивных транзитивных шкал Крипке с конечным множеством миров не совпадает с **QS4**.
- 77. Докажите, что $\mathbf{QH} = {}^{T}\mathbf{QS4}$.
- **78.** Докажите, что $\mathbf{QH} + CD = {}^{T}\mathbf{QS4} + Ba$.
- **79.** Докажите, что если суперинтуиционистская предикатная логика S полна по Крипке, то существует модальная предикатная логика L, для которой $^TL = S$.

Определение 1 Пусть F = (W, R), F' = (W', R') — пропозициональные пкалы Крипке. p-морфизм F на F' — это сюръективное отображение $f: W \longrightarrow W'$, такое, что f[R(u)] = R(f(u)) для всех $u \in W$.

Определение 2 Пусть f — p-морфизм (W,R) на (W',R');

 $\overline{M} = (W, R, D, \xi), \ M' = (W', R', D', \xi')$ — предикатные модели Крипке. M называется прообразом M' относительно f, если $D_u = D'_{f(u)}$ и $\xi_u = \xi'_{f(u)}$ для всех $u \in W$.

Определение 3 F = (W,R) — шкала c корием u, если $W = u \uparrow$. Такая шкала называется depegom, если $R^{-1}(u) = \varnothing$ и $\forall v \neq u \exists ! w (wRv)$. В этих случаях предикатные шкалы Крипке (F,D) также называются шкалами c корием u (соответственно, деревьями).

80. (а) В условиях определения 2, докажите, что

$$M, u \models A \Leftrightarrow M', f(u) \models A$$

для любого $u \in W$ и любого D_u -предложения A.

(b) Докажите аналогичное утверждение для интуиционистских моделей.

81. Пусть F = (W, R) – шкала с корнем u. Ее развёрткой называется шкала $F^{\sharp} := (W^{\sharp}, R^{\sharp})$, где W^{\sharp} – множество всех *путей* из u, т.е. конечных последовательностей (u_0, \ldots, u_n) , где $u_0 = u$, $u_i R u_{i+1}$ для всех i < n,

$$R^{\sharp}(u_0,\ldots,u_n) := \{(u_0,\ldots,u_n,v) \mid u_n R v\}.$$

- (a) Докажите, что F^{\sharp} дерево.
- (b) Докажите, что отображение $(u_0,\ldots,u_n)\mapsto u_n,$ p-морфизм F^\sharp на F.
- **82.** Докажите, что ${f QK}$ логика класса всех предикатных шкал Крипке с корнем.
- 83. Докажите, что $\mathbf{Q}\mathbf{K}$ логика класса всех (предикатных) деревьев.
- **84.** Пусть F = (W, R) шкала с рефлексивным транзитивным отношением.
 - (a) Докажите, что $R \cap R^{-1}$ отношение эквивалентности (его классы эквивалентности называются *сгустками*, или *кластерами*.
 - (b) Скелетом F называется шкала $F^{\sim} := (W^{\sim}, R^{\sim})$, где W^{\sim} множество всех сгустков в F, $UR^{\sim}V \Leftrightarrow \forall x \in U \, \forall y \in V \, xRy$. Докажите, что R^{\sim} частичный порядок.
 - (c) Постройте р-морфизм F на F^{\sim} .
- **85.** (а) Постройте р-морфизм F на F^{\sim} (см. предыдущую задачу).
 - (b) Докажите что всякая интуиционистская модель Крипке на интуиционистской предикатной шкале (F,D) является прообразом интуиционистской модели Крипке на некоторой шкале (F^{\sim},D') .
 - (с) Докажите что всякая полная по Крипке суперинтуиционистская логика является логикой некоторого класса шкал на частичных порядках.
- 86. Докажите полноту по Крипке для логики $\mathbf{QH}+CD+p\vee \neg (p\wedge q)\vee (p\to q).$
- **87.** Докажите полноту по Крипке для логики $\mathbf{QH} + CD + (p \to q \lor r) \lor (q \to p \lor r) \lor (r \to p \lor q).$
- 88. Докажите полноту по Крипке для логики ${\bf QAlt}_n + Ba.$
- **89.** Докажите полноту по Крипке для логики $\mathbf{QS4} + alt_n + Ba$.