RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2009 Volume 21, Issue 4, Pages 126–173 (Mi aa1147)

This article is cited in 6 papers

Research Papers

Homogenization of the mixed boundary value problem for a formally self-adjoint system in a periodically perforated domain

G. Cardonea, A. Corbo Espositob, S. A. Nazarovc

a University of Sannio, Department of Engineering, Benevento, Italy
b University of Cassino, Department of Automation, Electromagnetism Information and Industrial Mathematics, Cassino, Italy
c Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: A generalized Gårding-Korn inequality is established in a domain $\Omega(h)\subset{\mathbb{R}}^n$ with a small, of size $O(h)$, periodic perforation, without any restrictions on the shape of the periodicity cell, except for the usual assumptions that the boundary is Lipschitzian, which ensures the Korn inequality in a general domain. Homogenization is performed for a formally selfadjoint elliptic system of second order differential equations with the Dirichlet or Neumann conditions on the outer or inner parts of the boundary, respectively; the data of the problem are assumed to satisfy assumptions of two types: additional smoothness is required from the dependence on either the “slow” variables $x$, or the “fast” variables $y=h^{-1}x$. It is checked that the exponent $\delta\in(0,1/2]$ in the accuracy $O(h^\delta)$ $O(h^\delta)$ of homogenization depends on the smoothness properties of the problem data.

MSC: 35J57

Received: 24.11.2008


 English version:
St. Petersburg Mathematical Journal, 2010, 21:4, 601–634

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024