RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2009 Volume 21, Issue 6, Pages 182–201 (Mi aa1166)

This article is cited in 6 papers

Research Papers

Blaschke products and nonideal ideals in higher order Lipschitz algebras

K. M. Dyakonov

ICREA and Universitat de Barcelona, Departament de Matemàtica, Aplicada i Anàlisi, Barcelona, Spain

Abstract: We investigate certain ideals (associated with Blaschke products) of the analytic Lipschitz algebra $A^\alpha$, with $\alpha>1$, that fail to be “ideal spaces”. The latter means that the ideals in question are not describable by any size condition on the function's modulus. In the case where $\alpha=n$ is an integer, we study this phenomenon for the algebra $H^\infty_n=\{f\colon f^{(n)}\in H^\infty\}$ rather than for its more manageable Zygmund-type version. This part is based on a new theorem concerning the canonical factorization in $H^\infty_n$.

Keywords: inner functions, Blaschke products, Lipschitz spaces, ideals.

MSC: 30J10, 30H10, 46J15, 46J20

Received: 14.01.2009

Language: English


 English version:
St. Petersburg Mathematical Journal, 2010, 21:6, 979–993

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024