RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2009 Volume 21, Issue 6, Pages 227–240 (Mi aa1168)

This article is cited in 5 papers

Research Papers

Approximation of discrete functions and size of spectrum

A. Olevskiĭa, A. Ulanovskiĭb

a School of Mathematics, Tel Aviv University, Ramat Aviv, Israel
b Stavanger University, Stavanger, Norway

Abstract: Let $\Lambda\subset\mathbb R$ be a uniformly discrete sequence and $S\subset\mathbb R$ a compact set. It is proved that if there exists a bounded sequence of functions in the Paley–Wiener space $PW_S$ that approximates $\delta$-functions on $\Lambda$ with $l^2$-error $d$, then the measure of $S$ cannot be less than $2\pi(1-d^2)D^+(\Lambda)$. This estimate is sharp for every $d$. A similar estimate holds true when the norms of approximating functions have a moderate growth; the corresponding sharp growth restriction is found.

Keywords: Paley–Wiener space, Bernstein space, set of interpolation, approximation of discrete functions.

MSC: 30D15, 42A16

Received: 20.08.2009

Language: English


 English version:
St. Petersburg Mathematical Journal, 2010, 21:6, 1015–1025

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025