RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2010 Volume 22, Issue 3, Pages 177–190 (Mi aa1191)

This article is cited in 24 papers

Research Papers

Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of $\frak{gl}_N$

E. Mukhina, V. Tarasovba, A. Varchenkoc

a Department of Mathematical Sciences, Indiana University — Purdue University Indianapolis, Indianapolis, IN, USA
b St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia
c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract: It is shown that the Gaudin Hamiltonians $H_1,\dots,H_n$ generate the Bethe algebra of the $n$-fold tensor power of the vector representation of $\frak{gl}_N$. Surprisingly, the formula for the generators of the Bethe algebra in terms of the Gaudin Hamiltonians does not depend on $N$. Moreover, this formula coincides with Wilson's formula for the stationary Baker–Akhiezer function on the adelic Grassmannian.

Keywords: Gaudin model, Bethe algebra, Calogero–Moser space.

Received: 15.11.2009

Language: English


 English version:
St. Petersburg Mathematical Journal, 2011, 22:3, 463–472

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024