RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2010 Volume 22, Issue 4, Pages 1–20 (Mi aa1195)

This article is cited in 4 papers

Research Papers

On perturbations of the isometric semigroup of shifts on the semiaxis

G. G. Amosova, A. D. Baranovb, V. V. Kapustinc

a Moscow Institute of Physics and Technology, Moscow, Russia
b St. Petersburg State University, St. Petersburg, Russia
c St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Perturbations $(\widetilde\tau_t)_{t\ge0}$ of the semigroup of shifts $(\tau_t)_{t\ge 0}$ on $L^2(\mathbb R_+)$ are studied under the assumption that $\widetilde\tau_t-\tau_t$ belongs to a certain Schatten–von Neumann class $\mathfrak S_p$ with $p\ge1$. It is shown that, for the unitary component in the Wold–Kolmogorov decomposition of the cogenerator of the semigroup $(\widetilde\tau_t)_{t\ge0}$, any singular spectral type may be achieved by $\mathfrak S_1$-perturbations. An explicit construction is provided for a perturbation with a given spectral type, based on the theory of model spaces of the Hardy space $H^2$. Also, it is shown that an arbitrary prescribed spectral type may be obtained for the unitary component of the perturbed semigroup by a perturbation of class $\mathfrak S_p$ with $p>1$.

Keywords: semigroup of shifts, trace-class perturbation, Schatten–von Neumann ideals, Hardy space, inner function.

Received: 20.01.2010


 English version:
St. Petersburg Mathematical Journal, 2011, 22:4, 515–528

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024