RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2010 Volume 22, Issue 5, Pages 104–130 (Mi aa1206)

This article is cited in 8 papers

Research Papers

Orthogonal subsets of root systems and the orbit method

M. V. Ignat'ev

Samara State University, Samara, Russia

Abstract: Let $k$ be the algebraic closure of a finite field, $G$ a Chevalley group over $k$, $U$ the maximal unipotent subgroup of $G$. To each orthogonal subset $D$ of the root system of $G$ and each set $\xi$ of $|D|$ nonzero scalars in $k$ one can assign the coadjoint orbit of $U$. It is proved that the dimension of such an orbit does not depend on $\xi$. An upper bound for this dimension is also given in terms of the Weyl group.

Keywords: orthogonal subsets of root systems, coadjoint orbits.

Received: 14.04.2009


 English version:
St. Petersburg Mathematical Journal, 2011, 22:5, 777–794

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024