Abstract:
A second order elliptic equation with a small parameter at one of the highest order derivatives is considered in a three-dimensional domain. The limiting equation is a collection of two-dimensional elliptic equations in two-dimensional domains depending on one parameter. By the method of matching of asymptotic expansions, a uniform asymptotic approximation of the solution of a boundary-value problem is constructed and justified up to an arbitrary power of a small parameter.
Keywords:asymptotic, boundary value problem, small parameter, matching of asymptotic expansions.