RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2013 Volume 25, Issue 2, Pages 125–154 (Mi aa1326)

This article is cited in 4 papers

Research Papers

Supersymmetric structures for second order differential operators

F. Héraua, M. Hitrikb, J. Sjöstrandc

a Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, and UMR 6629 CNRS
b Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA
c IMB, Université de Bourgogne, 9, Av. A. Savary, BP 47870, FR-21078 Dijon C\'edex, and UMR 5584 CNRS

Abstract: Necessary and sufficient conditions are obtained for a real semiclassical partial differential operator of order two to possess a supersymmetric structure. For the operator coming from a chain of oscillators coupled to two heat baths, it is shown that no smooth supersymmetric structure can exist for a suitable interaction potential, provided that the temperatures of the baths are different.

Keywords: eigenvalue splitting, tunnelling effect, Witten–Hodge Laplacian, Kramers–Fokker–Planck operator, Schrödinger operator.

Received: 25.10.2012

Language: English


 English version:
St. Petersburg Mathematical Journal, 2014, 25:2, 241–263

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025