RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2007 Volume 19, Issue 5, Pages 159–178 (Mi aa140)

This article is cited in 25 papers

Research Papers

Rational surfaces and the canonical dimension of $\mathbf{PGL}_6$

J.-L. Colliot-Thélènea, N. A. Karpenkob, A. S. Merkur'evc

a CNRS, Mathématiques, Université Paris-Sud, Orsay, France
b Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie – Paris 6
c Department of Mathematics, University of California, Los Angeles, CA, USA

Abstract: By definition, the “canonical dimension” of an algebraic group over a field is the maximum of the canonical dimensions of the principal homogeneous spaces under that group. Over a field of characteristic zero, it is proved that the canonical dimension of the projective linear group $\mathbf{PGL}_6$ is 3. We give two different proofs, both of which lean upon the birational classification of rational surfaces over a nonclosed field. One of the proofs involves taking a novel look at del Pezzo surfaces of degree 6.

Keywords: Algebraic group, projective linear group, rational surfaces, birational classification, canonical dimension.

MSC: 14L10, 14L15

Received: 29.01.2007


 English version:
St. Petersburg Mathematical Journal, 2008, 19:5, 793–804

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025