RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2007 Volume 19, Issue 5, Pages 246–264 (Mi aa143)

This article is cited in 14 papers

Research Papers

Mean value theorems for automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $f$ be a holomorphic Hecke eigencuspform of even weight $k\ge 12$ for $\mathrm{SL}(2, \mathbb{Z})$ and let $L(s,\mathrm{sym}^2f)$ be the symmetric square $L$-function of $f$. Let $C(x)$ be the summatory function of the coefficients of $L(s,\mathrm{sym}^2 f)$. The true order is found for
$$ \int_0^x C(y)^2\,dy. $$


Keywords: Symmetric square $L$-function, summatory function, Euler product, Voronoi formula, mean value.

MSC: 11M41

Received: 05.04.2007


 English version:
St. Petersburg Mathematical Journal, 2008, 19:5, 853–866

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025