RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2015 Volume 27, Issue 6, Pages 234–241 (Mi aa1474)

This article is cited in 4 papers

Research Papers

Rationally isotropic quadratic spaces are locally isotropic. III

I. Panina, K. Pimenovb

a St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
b Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ pr., 28, Petergof, 198504, St. Petersburg, Russia

Abstract: Let $R$ be a regular semilocal domain containing a field such that all the residue fields are infinite. Let $K$ be the fraction field of $R$. Let $(R^n,q\colon R^n\to R)$ be a quadratic space over $R$ such that the quadric $\{q=0\}$ is smooth over $R$. If the quadratic space $(R^n,q\colon R^n\to R)$ over $R$ is isotropic over $K$, then there is a unimodular vector $v\in R^n$ such that $q(v)=0$. If $char(R)=2$, then in the case of even $n$ our assumption on $q$ is equivalent to the fact that $q$ is a nonsingular quadratic space and in the case of odd $n>2$ our assumption on $q$ is equivalent to the fact that $q$ is a semiregular quadratic space.

Keywords: quadratic form, regular local ring, isotropic vector, Grothendieck–Serre conjecture.

Received: 15.06.2015

Language: English


 English version:
St. Petersburg Mathematical Journal, 2016, 27:6, 1029–1034

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024