RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2017 Volume 29, Issue 6, Pages 178–181 (Mi aa1565)

This article is cited in 1 paper

Research Papers

A moving lemma for motivic spaces

I. A. Panin

St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia

Abstract: The following moving lemma is proved. Let $k$ be a field and $X$ be a quasi-projective variety. Let $Z$ be a closed subset in $X$ and let $U$ be the semi-local scheme of finitely many closed points on $X$. Then the natural morphism $U\to X/(X-Z)$ of Nisnevich sheaves is $\mathbf A^1$-homotopic to the constant morphism of $U\to X/(X-Z)$ sending $U$ to the distinguished point of $X/(X-Z)$.

Keywords: moving lemma, motivic spaces, Gersten conjecture.

MSC: 14C15, 14M17, 20G35

Received: 06.12.2016

Language: English


 English version:
St. Petersburg Mathematical Journal, 2018, 29:6, 993–995

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024