RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2018 Volume 30, Issue 6, Pages 43–96 (Mi aa1622)

This article is cited in 14 papers

Research Papers

On the motivic commutative ring spectrum $\mathbf{BO}$

I. Panina, C. Walterb

a St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
b Laboratoire J. A. Dieudonné, UMR 6621 du CNRS, Université de Nice — Sophia Antipolis, 28 Avenue Valrose, 06108 Nice Cedex 02, France

Abstract: An algebraic commutative ring $T$-spectrum $\mathbf{BO}$ is constructed such that it is stably fibrant, $(8,4)$-periodic, and on $\mathcal Sm\mathcal Op/S$ the cohomology theory $(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian $K$-theory functor $(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence $\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic $K$-theory is used to equip $\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is $\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory $\mathbf{BO}^{*,*}$ are unique structures compatible with the products
$$ KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y) $$
on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on $\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space $\langle-1\rangle$.

Keywords: Hermitian $K$-theory, Grothendieck–Witt groups, symplectic orientation.

MSC: 14C15

Received: 24.04.2018

Language: English


 English version:
St. Petersburg Mathematical Journal, 2019, 30:6, 933–972

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024