RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2019 Volume 31, Issue 3, Pages 10–35 (Mi aa1650)

This article is cited in 11 papers

Expository Surveys

Survey on gradient estimates for nonlinear elliptic equations in various function spaces

S.-S. Byuna, D. K. Palagachevb, L. G. Softovac

a Department of Mathematics and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea
b Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
c Department of Mathematics, University of Salerno, 84084 Fisciano, Italy

Abstract: Very general nonvariational elliptic equations of $ p$-Laplacian type are treated. An optimal Calderón-Zygmund theory is developed for such a nonlinear elliptic equation in divergence form in the setting of various function spaces including Lebesgue spaces, Orlicz spaces, weighted Orlicz spaces, and variable exponent Lebesgue spaces. The addressed arguments also apply to Morrey spaces, Lorentz spaces and generalized Orlicz spaces.

Keywords: gradient estimate, nonlinear elliptic equation, $L^p$ space, weighted Lebesgue space, Orlicz space, BMO, Muckenhoupt weight, Reifenberg flat domain.

MSC: Primary 35J60, 35R05; Secondary 35B65, 46E30, 46E35

Received: 08.10.2018

Language: English


 English version:
St. Petersburg Mathematical Journal, 2020, 31:3, 401–419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024