RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2020 Volume 32, Issue 2, Pages 85–106 (Mi aa1691)

This article is cited in 5 papers

Research Papers

Cantor uniqueness and multiplicity along subsequences

G. Kozmaa, A. M. Olevskiĭb

a Weizmann Institute of Science, Rehovot, Israel
b Tel Aviv University

Abstract: We construct a sequence $ c_{l}\to 0$ such that the trigonometric series $ \sum c_{l}e^{ilx}$ converges to zero everywhere on a subsequence $ n_{k}$. We show, for any such series, that the $ n_{k}$ must be very sparse, and that the support of the related distribution must be quite large.

Keywords: trigonometric series, localization principle, uniqueness.

MSC: 42A63

Received: 03.01.2019

Language: English


 English version:
St. Petersburg Mathematical Journal, 2021, 32:2, 261–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024