RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2020 Volume 32, Issue 2, Pages 229–253 (Mi aa1695)

This article is cited in 3 papers

Research Papers

Nonuniqueness of Leray-Hopf solutions for a dyadic model

N. Filonovab, P. A. Khodunovc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: The dyadic model $ \dot u_n + \lambda ^{2n}u_n - \lambda ^{\beta n}u_{n-1}^2 + \lambda ^{\beta (n+1)}u_nu_{n+1} = f_n$, $ u_n(0)=0$, is considered. It is shown that in the case of nontrivial right-hand side the system may have two different Leray-Hopf solutions.

Keywords: systems of ordinary differential equations, Navier–Stokes equations, dyadic model, nonuniqueness of solutions.

MSC: Primary 35Q30; Secondary 34E05

Received: 11.11.2018


 English version:
St. Petersburg Mathematical Journal, 2021, 32:2, 371–387

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024