RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2022 Volume 34, Issue 6, Pages 197–216 (Mi aa1840)

Research Papers

Stability of resonances for the Dirac operator

D. S. Mokeev

Национальный исследовательский университет “Высшая школа экономики”, ул. Кантемировская, 3, корп.1, лит. А, Санкт-Петербург

Abstract: In this paper, we study the Dirac operator on the half-line with a compactly supported potential. Let $(k_n)_{n \geq 1}$ be a sequence of its resonances with multiplicity and arranged such that $|k_n|$ do not decrease as $n$ increases. We will prove that for any sequence $(r_n)_{n \geq 1} \in \ell^1$ such that the points $k_n + r_n$ remain in the lower half-plane for all $n \geq 1$,the sequence $(k_n + r_n)_{n \geq 1}$ is also a sequence of resonances of a similar operator.Moreover, we will prove that the potential of the Dirac operator changes continuously under such perturbations.

Keywords: Dirac operator, inverse problems, resonances, stability.

Received: 23.08.2022


 English version:
St. Petersburg Mathematical Journal, 2023, 34:6, 1039–1053


© Steklov Math. Inst. of RAS, 2025