RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2023 Volume 35, Issue 1, Pages 80–108 (Mi aa1846)

Research Papers

Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model

A. Boutet de Monvela, M. Charifbc, L. Zielinskib

a Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Cité, 75205 Paris Cedex 13, France
b Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville EA 2597, Université du Littoral Côte d'Opale, F-62228 Calais, France
c Lebanese University, Faculty of Sciences, Department of Mathematics, P.O. Box 826 Tripoli, Lebanon

Abstract: The asymptotic behavior of large eigenvalues is studied for the two-photon quantum Rabi model with a finite bias. It is proved that the spectrum of this Hamiltonian model consists of two eigenvalue sequences $\{E_n^+\}_{n=0}^{\infty}$, $\{E_n^-\}_{n=0}^{\infty}$, and their large $n$ asymptotic behavior with error term $\mathrm{O}(n^{-1/2})$ is described. The principal tool is the method of near-similarity of operators introduced by G. V. Rozenbljum and developed in works of J. Janas, S. Naboko, and E. A. Yanovich (Tur).

Keywords: quantum Rabi model, unbounded selfadjoint operators, asymptotics of eigenvalues, discrete spectrum.

Received: 17.01.2022

Language: English


 English version:
St. Petersburg Mathematical Journal, 2024, 35:1, 61–82

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024