This article is cited in
2 papers
Research Papers
Donoghue $m$-functions for Singular Sturm–Liouville operators
F. Gesztesya,
L. L. Littlejohna,
R. Nicholsb,
M. Piorkowskic,
J. Stanfilld a Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, TX 76706, USA
b Department of Mathematics (Dept. 6956), The University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
c Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
d Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, USA
Abstract:
Let
$\dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space
$\mathcal{H}$ with equal deficiency indices and denote by $\mathcal{N}_i = \ker ((\dot A)^* - i I_{\mathcal{H}})$, $\dim (\mathcal{N}_i)=k\in \mathbb{N} \cup \{\infty\}$, the associated deficiency subspace of
$\dot A$. If
$A$ denotes a selfadjoint extension of
$\dot A$ in
$\mathcal{H}$, the Donoghue
$m$-operator
$M_{A,\mathcal{N}_i}^{Do} (\cdot)$ in
$\mathcal{N}_i$ associated with the pair
$(A,\mathcal{N}_i)$ is given by $ M_{A,\mathcal{N}_i}^{Do}(z)=zI_{\mathcal{N}_i} + (z^2+1) P_{\mathcal{N}_i} (A - z I_{\mathcal{H}})^{-1} P_{\mathcal{N}_i} \vert_{\mathcal{N}_i} , z\in \mathbb{C}\setminus \mathbb{R}, $ with
$I_{\mathcal{N}_i}$ the identity operator in
$\mathcal{N}_i$, and
$P_{\mathcal{N}_i}$ the orthogonal projection in
$\mathcal{H}$ onto
$\mathcal{N}_i$.
Assuming the standard local integrability hypotheses on the coefficients
$p, q,r$, we study all selfadjoint realizations corresponding to the differential expression $ \tau=\frac{1}{r(x)}[-\frac{d}{dx}p(x)\frac{d}{dx} + q(x)]$ for a.e.
$x\in(a,b) \subseteq \mathbb{R}$, in
$L^2((a,b); rdx)$, and, as the principal aim of this paper, systematically construct the associated Donoghue
$m$-functions (respectively,
$(2 \times 2)$ matrices) in all cases where
$\tau$ is in the limit circle case at least at one interval endpoint
$a$ or
$b$.
Keywords:
singular Sturm–Liouville operators, boundary values, boundary conditions, Donoghue $m$-functions. Received: 20.07.2021
Language: English