RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2023 Volume 35, Issue 1, Pages 134–183 (Mi aa1848)

This article is cited in 2 papers

Research Papers

Donoghue $m$-functions for Singular Sturm–Liouville operators

F. Gesztesya, L. L. Littlejohna, R. Nicholsb, M. Piorkowskic, J. Stanfilld

a Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, TX 76706, USA
b Department of Mathematics (Dept. 6956), The University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
c Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
d Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, USA

Abstract: Let $\dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $\mathcal{H}$ with equal deficiency indices and denote by $\mathcal{N}_i = \ker ((\dot A)^* - i I_{\mathcal{H}})$, $\dim (\mathcal{N}_i)=k\in \mathbb{N} \cup \{\infty\}$, the associated deficiency subspace of $\dot A$. If $A$ denotes a selfadjoint extension of $\dot A$ in $\mathcal{H}$, the Donoghue $m$-operator $M_{A,\mathcal{N}_i}^{Do} (\cdot)$ in $\mathcal{N}_i$ associated with the pair $(A,\mathcal{N}_i)$ is given by $ M_{A,\mathcal{N}_i}^{Do}(z)=zI_{\mathcal{N}_i} + (z^2+1) P_{\mathcal{N}_i} (A - z I_{\mathcal{H}})^{-1} P_{\mathcal{N}_i} \vert_{\mathcal{N}_i} , z\in \mathbb{C}\setminus \mathbb{R}, $ with $I_{\mathcal{N}_i}$ the identity operator in $\mathcal{N}_i$, and $P_{\mathcal{N}_i}$ the orthogonal projection in $\mathcal{H}$ onto $\mathcal{N}_i$.
Assuming the standard local integrability hypotheses on the coefficients $p, q,r$, we study all selfadjoint realizations corresponding to the differential expression $ \tau=\frac{1}{r(x)}[-\frac{d}{dx}p(x)\frac{d}{dx} + q(x)]$ for a.e. $x\in(a,b) \subseteq \mathbb{R}$, in $L^2((a,b); rdx)$, and, as the principal aim of this paper, systematically construct the associated Donoghue $m$-functions (respectively, $(2 \times 2)$ matrices) in all cases where $\tau$ is in the limit circle case at least at one interval endpoint $a$ or $b$.

Keywords: singular Sturm–Liouville operators, boundary values, boundary conditions, Donoghue $m$-functions.

Received: 20.07.2021

Language: English


 English version:
St. Petersburg Mathematical Journal, 2024, 35:1, 101–138


© Steklov Math. Inst. of RAS, 2024