Research Papers
Constructive description of Hölder spaces on a chord arc curve in $\mathbb R^3$
T. A. Alexeevaa,
N. A. Shirokovba a National Research University Higher School of Economics, St. Petersburg School of Economics and Management
b Saint Petersburg State University
Abstract:
Let
$L$ be a chord-arc curve in
$\mathbb R^3$. We introduce a functional class
$H^{r+\omega}(L)$ where a modulus of continuity
$\omega$ satisfies the Dini condition and
$r\geq1$. We define neighborhoods of
$L$ $\Omega_\delta(L)=\bigcup_M\in L B_\delta(M)$, $B_\delta(M)=\big\{X\in \mathbb R^3\,:\, \|XM\|<\delta\big\}$ and set
$\mathrm{Harm}\,\Omega_\delta(L)$ for harmonic functions in
$\Omega_\delta(L)$. The Theorem 1 states that if
$f\in H^{\omega+r}(L)$ then there exist functions
$v_\delta \in \mathrm{Harm}\,\Omega_\delta(L)$ such that $\big|f(X)-v_\delta(M)\big|\leq c_{f} \delta^r \omega(\delta)$,
$M\in L$, and $\big|\partial^\alpha v_\delta(M)\big|\leq c_{f}\frac{\omega(\delta)}{\delta}$,
$M\in \Omega_\delta(L)$,
$|\alpha|=r+1$. The Theorem 2 states that if a function
$f$ defined on
$L$ satisfies claim of Theorem 1 then
$f\in H^{\omega+r}(L)$.
Keywords:
approximation, harmonic functions, Hölder classes.
MSC: Primary
41A30; Secondary
41A27 Received: 27.10.2023