RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2025 Volume 37, Issue 4, Pages 1–17 (Mi aa1968)

Research Papers

Sharp estimate of approximation by the Szasz–Mirakjan operator in terms of the second modulus of continuity

L. N. Ikhsanov

St. Petersburg State University, Mathematics and Mechanics Faculty

Abstract: Let $M_n$ be the Szasz-Mirakjan operator and $f : [0, \infty) \to \mathbb{R}$ be a function bounded on $[0, a]$ together with $M_nf$. Then
\begin{equation*} \|M_nf-f\|_{[0, a]} \le \omega_2\left(f, 4\cdot\sqrt{\frac{a}n}\right). \end{equation*}
The constant $1$ in front of $\omega_2$ is sharp for every $n in \mathbb{N}$. Until now a similar result was known only for the Bernstein operator.

Keywords: positive operators, Szasz–Mirakjan operator, second modulus of continuity.

Received: 02.11.2024



© Steklov Math. Inst. of RAS, 2025