RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2008 Volume 20, Issue 3, Pages 224–242 (Mi aa519)

This article is cited in 12 papers

Research Papers

Modulus of continuity of operator functions

Yu. B. Farforovskayaa, L. Nikolskayab

a Mathematics Department, State University of Telecommunications, St. Petersburg
b Institut de Mathématiques de Bordeaux, Université Bordeaux-1, Talence, France

Abstract: Let $A$ and $B$ be bounded selfadjoint operators on a separable Hilbert space, and let $f$ be a continuous function defined on an interval $[a,b]$ containing the spectra of $A$ and $B$. If $\omega _f$ denotes the modulus of continuity of $f$, then
$$ \|f(A)-f(B)\|\leq 4\Big[\log\Big(\frac{b-a}{\|A-B\|}+1\Big)+1\Big]^2\cdot\omega _f(\|A-B\|). $$
A similar result is true for unbounded selfadjoint operators, under some natural assumptions on the growth of $f$.

Keywords: Selfadjoint operator, operator function, modulas of continuity.

MSC: 47B15

Received: 14.06.2007

Language: English


 English version:
St. Petersburg Mathematical Journal, 2009, 20:3, 493–506

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024