RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2006 Volume 18, Issue 4, Pages 1–9 (Mi aa76)

This article is cited in 3 papers

Research Papers

Interpolation of Besov spaces in the nondiagonal case

I. Asekritovaa, N. Kruglyakb

a School of Mathematics and System Engineering, Växjö University, Sweden
b Department of Mathematics, Lulea University of Technology, Sweden

Abstract: In the nondiagonal case, interpolation spaces for a collection of Besov spaces are described. The results are consequences of the fact that, whenever the convex hull of points $(\bar s_0,\eta_0),\dots,(\bar s_n,\eta_n)\in \mathbb R^{m+1}$ includes a ball of $\mathbb R^{m+1}$, we have
$$ (l^{\bar s_0}_{q_0}((X_0,X_1)_{\eta_0,p_0}),\dots,l^{\bar s_n}_{q_n}((X_0,X_1)_{\eta_n,p_n}))=l^{\bar s_{\bar{\theta}}}_q((X_0,X_1)_{\eta_{\bar{\theta}},q}), $$
where $\bar\theta=(\theta_0,\dots,\theta_n)$ and $(s_{\bar{\theta}},\eta_{\bar{\theta}})=\theta_0(\bar s_0, \eta_0)+\dots+\theta_n(\bar s_n,\eta_n)$.

MSC: Primary 46B70; Secondary 46E30

Received: 21.01.2006


 English version:
St. Petersburg Mathematical Journal, 2007, 18:4, 511–516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025