RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2006 Volume 18, Issue 4, Pages 185–197 (Mi aa82)

This article is cited in 3 papers

Research Papers

Estimation of a quadratic function and the $p$-Banach–Saks property

E. M. Semenova, F. A. Sukochevb

a Voronezh State University
b Flinders University of SA, Bedford Park, SA, Australia

Abstract: Let $E$ be a rearrangement-invariant Banach function space on $[0,1]$, and let $\Gamma(E)$ denote the set of all $p\ge 1$ such that any sequence $\{x_n\}$ in $E$ converging weakly to 0 has a subsequence $\{y_n\}$ with $\sup_m m^{-1/p}\|\sum_{1\le k\le m}y_n\|<\infty$. The set $\Gamma_i(E)$ is defined similarly, but only sequences $\{x_n\}$ of independent random variables are taken into account. It is proved (under the assumption $\Gamma(E)\ne\{1\}$) that if $\Gamma_i(E)\setminus\Gamma(E)\ne\varnothing$, then $\Gamma_i(E)\setminus\Gamma(E)=\{2\}$.

MSC: 46E30

Received: 22.02.2006


 English version:
St. Petersburg Mathematical Journal, 2007, 18:4, 647–656

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025