RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2009 Volume 21, Issue 1, Pages 61–73 (Mi aa859)

This article is cited in 2 papers

On $\theta$-centralizers of semiprime rings (II)

M. N. Daifa, M. S. Tammam El-Sayiadb

a Department of Mathematics, Faculty of Science, Al-Azhar Universit, Cairo, Egypt
b Department of Mathematics, Faculty of Science, Beni Suef University, Beni Suef, Egypt

Abstract: The following result is proved: Let $R$ be a 2-torsion free semiprime ring, and let $T\colon R\to R$ be an additive mapping, related to a surjective homomorphism $\theta\colon R\to R$, such that $2T(x^2)=T(x)\theta(x)+\theta(x)T(x)$ for all $x\in R$. Then $T$ is both a left and a right $\theta$-centralizer.

Keywords: prime ring, semiprime ring, left(right) centralizer, left(right) $\theta$-centralizer, left(right) Jordan $\theta$-centralizer, derivation, Jordan derivation.

MSC: 16N60

Received: 28.09.2007

Language: English


 English version:
St. Petersburg Mathematical Journal, 2010, 21:1, 43–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024