RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 2006 Volume 18, Issue 5, Pages 156–172 (Mi aa92)

This article is cited in 17 papers

Research Papers

On quantization of the Semenov–Tian–Shansky Poisson bracket on simple algebraic groups

A. Mudrovab

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics, University of York, UK

Abstract: Let $G$ be a simple complex factorizable Poisson algebraic group. Let $\mathcal U_\hbar(\mathfrak g)$ be the corresponding quantum group. We study the $\mathcal U_\hbar(\mathfrak g)$-equivariant quantization $\mathcal C_\hbar[G]$ of the affine coordinate ring $\mathcal C[G]$ along the Semenov–Tian–Shansky bracket. For a simply connected group $G$, we give an elementary proof for the analog of the Kostant–Richardson theorem stating that $\mathcal C_\hbar[G]$ is a free module over its center.

Keywords: Poisson Lie manifolds, quantum groups, equivariant quantization.

MSC: Primary 53Dxx; Secondary 20Gxx

Received: 22.04.2006

Language: English


 English version:
St. Petersburg Mathematical Journal, 2007, 18:5, 797–808

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024