RUS  ENG
Full version
JOURNALS // Algebra i Analiz // Archive

Algebra i Analiz, 1998 Volume 10, Issue 3, Pages 31–44 (Mi aa995)

This article is cited in 4 papers

Research Papers

Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a least superharmonic majorant

P. Koosisa, Henrik L. Pedersenb

a Mathematics Department, McGill University, Montreal, Québec, Canada
b Matematisk Afdeling, Københavns Universitet, København, Denmark

Abstract: In this,paper and the following one, it is shown that if $A<\pi$ and $\eta>0$ is sufficiently small (depending on $A$), the entire functions $f(z)$ of exponential type $\le A$ satisfying $\sum^{\infty}_{m=-\infty}(\log^+|f(n)|/(1+n^2))\le\eta$ form a normal family (in $\mathbb C$). General properties of least superharmonic majorants are used to obtain this result, and from it the multiplier theorem of Beurling and Malliavin is readily derived.

Keywords: Entire function of exponential type, least superharmonic majorant, logarithmic sum, BeurlingT-Malliavin multiplier theorem.

Received: 27.10.1997

Language: English


 English version:
St. Petersburg Mathematical Journal, 1999, 10:3, 429–439

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024