RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2009 Issue 1, Pages 14–19 (Mi adm104)

RESEARCH ARTICLE

Prime radical of Ore extensions over $\delta$-rigid rings

V. K. Bhat

School of Applied Physics and Mathematics, SMVD University, P/o Kakryal, Katra, J and K, India–182301

Abstract: Let R be a ring. Let $\sigma$ be an automorphism of R and $\delta$ be a $\sigma$-derivation of R. We say that R is a $\delta$-rigid ring if $a\delta(a)\in P(R)$ implies $a\in P(R)$, $a\in R$; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a $\delta$-rigid ring R and that of $R[x,\sigma,\delta]$. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers).

Keywords: Radical, automorphism, derivation, completely prime, $\delta$-ring, Q-algebra.

MSC: 16-XX; 16P40,16P50,16U20

Received: 14.09.2007
Revised: 01.05.2009

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024