RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2010 Volume 9, Issue 2, Pages 1–10 (Mi adm16)

This article is cited in 2 papers

RESEARCH ARTICLE

A note about splittings of groups and commensurability under a cohomological point of view

Maria Gorete Carreira Andrade, Ermínia de Lourdes Campello Fanti

UNESP – Universidade Estadual Paulista, Departamento de Matemática Rua Cristovão Colombo, 2265, 15054-000, São José do Rio Preto – SP Brazil

Abstract: Let $G$ be a group, let $S$ be a subgroup with infinite index in $G$ and let $\mathcal{F}_SG$ be a certain $\mathbb Z_2G$-module. In this paper, using the cohomological invariant $E(G,S,\mathcal{F}_SG)$ or simply $\tilde{E}(G,S)$ (defined in [2]), we analyze some results about splittings of group $G$ over a commensurable with $S$ subgroup which are related with the algebraic obstruction "$\mathrm{sing}_G(S)$" defined by Kropholler and Roller [8]. We conclude that $\tilde{E}(G,S)$ can substitute the obstruction "$\mathrm{sing}_G(S)$" in more general way. We also analyze splittings of groups in the case, when $G$ and $S$ satisfy certain duality conditions.

Keywords: Splittings of groups, cohomology of groups, commensurability.

MSC: 20J05, 20J06, 20E06

Received: 16.09.2009
Revised: 09.11.2010

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024