RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2008 Issue 2, Pages 123–129 (Mi adm164)

This article is cited in 2 papers

RESEARCH ARTICLE

Random walks on finite groups converging after finite number of steps

A. L. Vyshnevetskiya, E. M. Zhmud'

a Karazina st. 7/9, apt. 34, 61078, Kharkov, Ukraine

Abstract: Let $P$ be a probability on a finite group $G$, $P^{(n)}=P\ast\ldots\ast P$ ($n$ times) be an $n$-fold convolution of $P$. If $n\rightarrow\infty$, then under mild conditions $P^{(n)}$ converges to the uniform probability $U(g)=\frac 1{|G|}$ $(g\in G)$. We study the case when the sequence $P^{(n)}$ reaches its limit $U$ after finite number of steps: $P^{(k)}=P^{(k+1)}=\dots=U$ for some $k$. Let $\Omega(G)$ be a set of the probabilities satisfying to that condition. Obviously, $U\in\Omega(G)$. We prove that $\Omega(G)\neq U$ for “almost all” non-Abelian groups and describe the groups for which $\Omega(G)=U$. If $P\in \Omega(G)$, then $P^{(b)}=U$, where $b$ is the maximal degree of irreducible complex representations of the group $G$.

Keywords: random walks on groups, finite groups, group algebra.

MSC: 20P05, 60B15

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024